OptionPilot: Investigating an Interactive, Path-Oriented
Approach to LLM-Driven Code Creation

Arne Riethmiller
arne.riethmueller@gmail.com
Technische Universitit Berlin

Berlin, Germany

You: Persist data changes and support timestamped backups in the app

Configure Your Solution

Produce Code

You: Confirmed selections and chose to Produce Code'

Select one option for each decision below. Recommended options are pre-selected.

Choose Data Storage | Use CSV/JSON
Method s d bax

Start a conversation by asking a coding question!

Use a Database

Backup Frequency
Persist data changes and support timestamped backups in the app D backups

handle saving, loading, and backup creation. These will
variable and create timestamped backups in a backups’

Backup Storage
Location

times

1. User submits a request, as
with other LLM assistants.

2. OptionPilot displays an interactive UI that allow the
user to steer the output. User can configure a solution by
clicking on option for each decision and confirm their

Storein

3. The LLM implements the solution
according to the options selected by
the user.

choices by clicking Produce Code.

Figure 1: The core functionality of the prototype.

Abstract

Large Language Models (LLMs) are increasingly integrated into
software development workflows, yet their use for code generation
continues to face recurring challenges such as premature outputs
and obscured implementation paths. This work introduces the con-
cept of decision points, a mechanism that inserts a pause between
a user’s request and code generation in LLM coding assistants
in case ambiguities remain or multiple potential implementation
paths exist. Here, instead of producing code immediately, key im-
plementation choices are surfaced to the user through interactive
Ul elements that highlight decisions along with applicable options
for the user to select, allowing users to clarify their intent and
steer outputs. We implemented OptionPilot as a proof-of-concept
prototype to evaluate the proposed concept in a mixed-methods,
qualitative first lab study with 14 participants. Findings indicate
that decision points can enhance users’ sense of control and reduce
frustration from premature outputs or misaligned code generation.
Participants appreciated decision points for making key decisions
and trade-offs explicit, though their effectiveness depended on the
perceived contextual relevance of presented decisions. We argue
that well-designed interactive mechanisms, as illustrated by deci-
sion points, have the potential to enhance the experience of using
LLM coding assistants and to facilitate more effective forms of
human-AI collaboration in other fields.

1 Introduction

Large Language Models (LLMs) have demonstrated significant po-
tential in supporting software engineering tasks, beginning with the
ability to generate code from natural language instructions [28, 16,
25]. Additionally, LLMs are proving valuable for a range of adjacent
tasks such as generating documentation, and their capabilities are
increasingly being integrated directly into integrated development
environments (IDEs), thereby unlocking new workflows and op-
portunities for developer assistance [11, 24, 13]. Ongoing research
is investigating these developments from various perspectives, ex-
amining not only the code generation capabilities of LLMs but also
how their integration into development environments could re-
shape existing workflows [1, 28, 35]. Research finds, for example,
that efficient interactions and clear presentation of outputs are key
factors shaping how valuable developers perceive LLM assistance
to be [27].

Although LLM-assisted programming is widely regarded as hold-
ing significant potential, research consistently highlights recurring
shortcomings that limit its effectiveness, stemming both from the
capabilities of the underlying models and their integration into
LLM programming assistants commonly used in IDEs.

For example, LLMs in general frequently respond to underspeci-
fied requests with fully formed solutions. They do this by making

https://orcid.org/1234-5678-9012

assumptions about the user’s intent rather than prompting for clar-
ification, and generally show shortcomings in capturing user intent
[14, 6]. This tendency can lead to premature outputs, primarily code
that might be syntactically correct yet misaligned with the devel-
opers’ actual intentions, potentially causing unnecessary rework
and frustration [15, 31]. This behavior, in part, forces developers
to carefully scrutinize long blocks of generated code to determine
whether incorrect assumptions may have been introduced, thereby
contributing to cognitive overload [3, 34, 1]. Long, insufficiently
structured outputs make it difficult for developers to identify criti-
cal information or verify whether the implementation aligns with
the original intent. Similarly, important implementation choices
are often not highlighted, leaving alternative implementation paths
obscured [15, 34]. This lack of transparency both increases the cog-
nitive effort required to review outputs and leads developers to
experiencing a loss of control over the implementation process [3].

We introduce the concept of decision points as a mechanism
to address these limitations. Decision points follow the notion of
augmentation instead of automation to address the shortcomings
of premature outputs, obscured implementation paths, and high
cognitive load.

Differing from prevailing approaches, the concept intends to
insert a pause between request and an LLM’s output whenever
ambiguities remain, instead surfacing these ambiguities or poten-
tial implementation paths to the user in an interactive UI display-
ing multiple options, thereby allowing the user to clarify intent
or steer the outcome. Instead of producing a solution based on
low-confidence assumptions, for example, when multiple imple-
mentation paths are valid, the system prompt is designed to identify
areas where information is missing and prompt the user for input.

To examine the potential for addressing the identified shortcom-
ings of LLM-based programming assistants through Decision Points,
we developed a prototype called OptionPilot. Figure 1 illustrates an
example interaction in which (1.) a user enters a prompt contain-
ing ambiguities, and (2.) the underlying LLM generates a decision
point that allows the user to choose between different options, each
accompanied by explanations of potential trade-offs. After mak-
ing their decisions, the user clicks Produce Code, which triggers
the LLM to implement the solution according to the user-specified
choices (3.).

The concept aims to demonstrate a subtle design shift from
immediate generation to augmented interaction, thereby enhancing
the developer experience by reducing the need to correct misaligned
code or review lengthy outputs for incorrect assumptions.

Building on the identified shortcomings of current LLM-based
coding assistants, namely premature code outputs, obscured imple-
mentation paths, and high cognitive load, this work investigates
whether the concept termed decision points has potential to ad-
dress these shortcomings through a collaborative approach. The
core assumption is that by surfacing key decisions before code is
generated, users can consciously steer the outcome, thereby reduc-
ing the mental effort required to interpret or correct misaligned
outputs afterward. To investigate this, we formulated the following
research questions:

RQ1 To what extent do decision points or specific aspects of them,
demonstrate potential to mitigate premature outputs in LLM-
assisted programming?

This question addresses the tendency of current tools to generate
code prematurely, for instance, as a result of incomplete or ambigu-
ous information.

RQ2 To what extent do decision points or specific aspects of them,
demonstrate potential to address obscured implementation
paths in LLM-assisted programming?

This question examines whether and how decision points can be
effective at making different implementation paths, as well as their
implications and trade-offs explicit to users.

RQ3 By addressing these aspects, to what extent do decision points
demonstrate potential to reduce developers’ cognitive load
during LLM-assisted programming?

This question connects the two preceding aspects, evaluating whether,
by addressing these issues or through additional mechanisms, de-
cision points hold potential to reduce developers’ cognitive load
during LLM-assisted programming.

To investigate the potential of the proposed interaction concept,
we first implemented a proof-of-concept prototype. After initial
refinement, we conducted a mixed-methods, qualitative first user
study to collect initial insights from user experiences. In moderated
lab sessions, we asked professional developers and adjacent job roles
of varying experience levels to work on two sets of programming
tasks, with decision points enabled for one of the two sets. Data
was collected through think-aloud protocols, screen recordings,
questionnaires, and semi-structured exit interviews. This approach
enabled us to capture data from multiple perspectives and obtain
initial insights into the potential of decision points.

Our findings indicate that the concept of decision points has the
potential to improve the experience of using LLM-based coding
assistants. Participants in the user study appreciated being able
to steer outputs proactively and reported that the approach re-
duced frustration with premature or misaligned code generation.
At the same time, the results highlight that the effectiveness of
decision points strongly depends on their contextual relevance and
timing within the interaction. Decision points perceived as irrele-
vant increase mental load rather than reducing it. The clear visual
highlighting of decisions and their implications, as well as the in-
teractivity of decision points, were seen as beneficial and could be
effective not only for enhancing LLM-based coding assistants but
also for improving the experience of using LLM chats in general.
Based on these insights, we propose several recommendations for
future adaptations, including default decision options and collapsi-
ble sections with additional information, such as example code for
different options.

This work makes three contributions. We introduce decision
points as a concept for LLM-based coding assistants to address the
shortcomings as discussed above. We present OptionPilot as a proof-
of-concept prototype that implements decision points through

JSON-structured LLM outputs and an interactive Ul layer. Finally,
we report findings from a mixed-methods, qualitative first user
study comparing developers’ usage of OptionPilot to a baseline con-
dition. The study yielded insightful observations about the concept
and directions for future adaptations. Through these findings, we
contribute to the developing notion of augmentation rather than
automation in human-LLM interaction, introducing concepts that
may extend beyond programming assistants.

In this work, We first situate this study within the broader con-
text of research on LLM-based developer assistance and outline
the identified shortcomings motivating this study. In Section 3, we
detail the implementation of the proof-of-concept prototype, while
Section 4 describes the methodological design of the user study. In
Section 5, we present the user study findings with their implica-
tions and limitations discussed in Section 6. Finally, in Section 7
we conclude by summarizing the main outcomes and reflecting on
potential future research directions.

2 Background and Related Work

Applying LLMs to code generation and software engineering, in
general, is a rapidly evolving and highly promising area of research.
The capabilities of LLMs are advancing continuously and are ac-
companied by new tools and methods designed to leverage these
emerging opportunities [7].

In the following, we provide a brief overview of different research
directions in the field. We first describe how LLMs are used as
developer tools, ranging from code completion to broader forms of
assistance within IDEs. We then highlight an ongoing shift in focus
from full automation to human-centered augmentation, illustrated
with examples from prior research.

Finally, we summarize recurring shortcomings reported across
studies and approaches, namely premature outputs, obscured imple-
mentation paths, and high cognitive load. This review is intention-
ally selective rather than exhaustive, with the goal of presenting an
overview of the research landscape and deriving open potentials to
motivate this work.

2.1 LLM:s as Developer Tools

LLMs have proven to be valuable tools across a broad range of
domains involving natural language, and they continue to grow in
capability through advancements such as larger parameter counts
and techniques like chain-of-thought reasoning [30, 7, 33]. Software
engineering has emerged as a promising domain for the application
of LLMs, as they demonstrate potential in a variety of related tasks,
beginning with code generation [28].

Initially, research in this area focused on automatic code gener-
ation and program synthesis, ranging from generating code from
formal specifications to producing code from natural language in-
structions [16, 25]. This capability can be applied in practice to
support developers, for example, by providing code completion fea-
tures in IDEs, where the assistant continuously makes suggestions
to complete lines of code while the developer is typing [1].

Increasingly, LLMs are being applied more broadly across soft-
ware engineering activities, moving beyond code generation and
related tasks, such as translating code between languages, to also

assisting in activities like code explanation and documentation
generation [11, 22, 23, 28].

Although LLMs are being used for many of these tasks through
general-purpose chat interfaces such as ChatGPT?, there are increas-
ing efforts to integrate these capabilities more closely into software
engineering workflows. Popular IDEs such as Visual Studio Code,
as well as newer tools like Cursor?, now increasingly embed LLM-
based chat interfaces and other LLM-based features directly into
development environments. These integrations assist developers
by embedding LLMs more deeply into their workflows, allowing
them, for instance, to continuously access contextual information
from their active projects [13, 11, 24].

These multi-purpose LLM coding assistants augment developers’
work in a variety of novel ways and are increasingly being adopted
by developers [24, 15]. In a typical workflow with an IDE-integrated
chat interface, the starting point is comparable to working with a
standard LLM chat interface such as ChatGPT. For this, the appro-
priate context must be established, developers must write prompts
and review generated outputs, often iteratively, continuously as-
sessing which parts of the outputs to integrate into their work

[3].

2.2 Shifting Perspectives on LLMs for Developer
Assistance

As LLM-based tools become increasingly capable and widely used,
research has begun looking beyond their performance in code gen-
eration alone towards an understanding of how these tools fit into
developer workflows. Newer studies explore how LLMs can be de-
ployed to assist in, or even redefine, developer work, opening up
new possibilities and challenges.

The predominant vision of the future of LLM-assisted program-
ming assumes humans taking the role of stating and potentially
refining an end goal, after which an LLM carries out the implemen-
tation, producing results that are then assessed by a human [31].
Research in this direction focuses on assessing and improving code
generation capabilities directly or through the development of new
techniques, such as integrating automated tests for generated code
[6, 32].

Other studies approach the assessment of the usefulness of cod-
ing assistants in a more holistic way, for example by investigating
which specific tasks make up the activity of software engineering
and how tools could assist in these areas. One study investigates
the usefulness of LLM programming assistants for tasks in four
groups of activity, namely: (1.) implementing new features, (2.)
writing tests, (3.) bug triaging and (4.) refactoring and writing natu-
ral language artifacts [24]. Similarly, a related study examines the
roles LLMs can take in assisting in seven categories of activities
in software engineering such as code generation, code translation,
vulnerability detection, or question and answer interactions [33].

Studies falling into the mentioned categories tend to assess
the performance of assistants by benchmarking against existing
datasets for example sets of coding problems or, by investigating
specific capabilities for classes of problems by combining evaluation
metrics [11].

!https://chatgpt.com/
Zhttps://cursor.com/

https://chatgpt.com/
https://cursor.com/

Following the early focus on benchmarking and technical perfor-
mance, recent research has increasingly turned toward examining
how LLM programming assistants are used in real-world practice.
An example of this investigates how programmers interact with the
code generation feature of GitHub Copilot and finds that tasks for
which developers seek LLM assistance there can be divided into two
categories: exploration mode as in exploring potential solutions for
a problem, and acceleration mode as in implementing an envisioned
solution [1]. In another example, researchers examined the usage
of watsonx, the in-house coding assistant from IBM. Among other
results, findings suggest that code understanding in general was a
more common use case than actual code generation [28].

Investigating what tasks these tools are utilized for is an example
of how research is increasingly exploring the field of LLM assistance
for software development from a variety of angles, attempting to
understand how developers will leverage and adapt to these novel
tools and possibilities in the future. Findings that offer valuable
insights in this regard are, for example, the following. Within the
output of LLM assistants, accompanying information such as expla-
nations can be equally relevant to the experience as the code output
itself [7]. Similarly, findings suggest that an efficient interaction
design and clear presentation of outputs are key factors for the
perceived quality of a developers’ experience with LLM tools, while
a narrow focus on technical performance can obscure their broader
potential [27].

Insights like these are prompting broader questions that go be-
yond task-specific performance toward understanding the evolving
role of LLM tools within developer workflows. Together with the
growing adoption of LLM programming assistants, this raises ques-
tions about how programming workflows will evolve and how
new capabilities may redefine established assumptions, roles, and
processes [1, 23, 27].

An example of this shift in perspective, from evaluating the cor-
rectness of generated code to envisioning new forms of collabora-
tion, is the growing notion of augmentation rather than automation.
For instance, data from the Anthropic Economic Index published by
Anthropic show that 57% of prompts on Claude.ai®, the company’s
general-purpose LLM chat interface, lean toward collaboration in-
stead of automation (43%) [10]. This is reflected in other findings
that show users of artificial intelligence (AI) systems favor retaining
the final decision over an interaction’s output, thereby maintain-
ing a sense of control [9]. This marks a shift away from the prior
emphasis on increasing automation, which has long been the focus
of many Al systems [20].

These insights relate closely to a recurring limitation observed in
LLM programming assistants and LLMs more broadly, the challenge
of accurately capturing user intent. Current approaches regularly
fall short in this regard, for instance, by failing to guide users to clar-
ify their intent when a request is ambiguous [6, 11]. LLMs generally
show a tendency to respond to requests with fully formed solutions,
even when crucial information is missing, and do so by making po-
tentially incorrect assumptions [14]. When presented with a coding
task, LLMs show a tendency to immediately output code upon the
first user request. This behavior can lead to code outputs that are,
for example syntactically correct but do not support the intended

3https://claude.ai/

functionality [11]. This tendency to generate code immediately can
have a range of negative consequences, for instance, forcing users
to skim lengthy code suggestions to determine their usefulness,
which can lead to cognitive overload. One way to mitigate this issue
is to design tools that refrain from low-confidence assumptions,
meaning the tool should first determine whether sufficient context
is available before making a suggestion [1].

This can be seen as an example of how programming might
evolve, with human-AI interaction becoming an important part.
By recognizing both the capabilities of LLMs and their limitations
in capturing user intent, the focus of code generation can shift
from full automation toward more augmented approaches. This
shift illustrates how programming is likely to evolve, with human-
Al interaction becoming an increasingly central element of the
development process.

Rather than focusing on how current tools are used, an alter-
native perspective is to explore potential future possibilities while
drawing key lessons from prior approaches. Research in this di-
rection investigates new forms of collaboration between humans
and LLMs, moving beyond one-shot code generation. One study,
for example, starts from the idea that programming can be under-
stood as a design activity, as in the process of creating software
not just being a matter of translating a set of fixed requirements
into code, but as a process of exploring both the given problem and
possible solutions iteratively in order to find a suitable solution.
The researchers implemented an IDE prototype designed to sup-
port iterative exploration of multiple implementation options and
their associated trade-offs, while tracking decisions and rationales
outside the chat history. Although their approach, which featured
three separate, coordinated agents, enabled broader exploration of
alternatives, it also introduced additional cognitive load, as users
felt overwhelmed by managing multiple panels and functionalities
within the IDE [31].

A different study examines an approach where, in a specific use
case, a UI consisting of sliders, drop-downs, or other elements is
placed between the prompt and the code output, allowing users to
make certain adjustments to the output. This scaffolding is designed
to improve code understandability and reduce prompting effort.
They report that their approach reduced prompting effort and en-
couraged exploration, but insufficient explanations and unwanted
suggestions slowed users down [4].

Another illustrative example investigates a simpler idea which
simultaneously follows the theme of reassessing the use and role of
LLMs in programming based on what is possible rather than what is
currently done. They implemented an IDE plugin that enables users
to generate explanations for a specific code snippet, with a single
mouse click after highlighting the selected code snippet, while
taking into account the context in the given project. They find that
users appreciated having the plugin, viewing it as an easy-to-use
add-on to Copilot [17]. This study exemplifies how current systems
can be improved with relatively simple solutions that utilize LLMs
in imaginative ways.

These studies highlight the potential of novel solutions while
surfacing potential pitfalls.

https://claude.ai/

2.3 Identified Shortcomings in Previous
Approaches

To provide context for the motivation of this work, we highlight
three related issues with current approaches in LLM-assisted pro-
gramming, as identified by research, beginning with an expansion
of the previously outlined issue of premature outputs. Premature
outputs are in part causing obscured implementation paths and
both issues contribute to cognitive overload.

Premature Outputs. While premature outputs are a documented
challenge for LLMs in general, their tendency to produce final
artifacts upon a user request can be a particular issue for LLM
programming assistants.

When conditions are not fully specified, an LLM may gener-
ate code that fulfills the explicitly stated requirements but fails to
capture the underlying intent of the developer [15, 14]. This lim-
itation is amplified by the fact that requirements are frequently
underspecified in early prompts and tend to in part only evolve
through subsequent design decisions or trade-offs made during the
implementation process [31]. Hallucinations, a well-documented
issue for LLMs in general, can additionally contribute to this is-
sue. Instead of surfacing a lack of information to the user, LLMs
occasionally fabricate pieces of missing information, which is at
times hard to detect for users [7]. These issues are exacerbated by
LLMs’ difficulty in revising prior misconceptions and struggle to do
so even when incorrect assumptions have been corrected further
along in an interaction [14].

Premature outputs contribute to developer frustration as devel-
opers must invest effort in correcting invalid results [15, 14]. Given
the persistence of premature outputs, users must routinely review
generated code to identify potential inaccuracies such as misaligned
assumptions, frequently working under the assumption that unin-
tended and potentially unwanted elements are being implemented
[34, 1]. As an alternative to fully formed but premature outputs,
research shows that users often prefer receiving an initial starting
point that scaffolds a solution, enabling them to refine and extend
the implementation according to their own intentions [31, 28, 35].

Obscured Implementation Paths. Obscured implementation paths
occur when an LLM proceeds with a specific solution without
making users aware of alternative approaches, which may carry
entirely different, and potentially more suitable, implications for the
future of the codebase. The code generated might be fully functional,
nevertheless critical choices are regularly not highlighted in LLM
outputs [25]. Obscured implementation paths are a related issue
to premature outputs and arise at times as a consequence of them.
With obscured implementation paths, the issue primarily lies in
a limited ability of the user to steer the output and influence the
broader project trajectory, which leads to users experiencing a loss
of control [15, 34]. Obscured implementation paths can require
users to engage in additional prompting to uncover potentially
more suitable or effective approaches [3].

A number of studies emphasize the need for LLM programming
assistants to incorporate intuitive mechanisms that enable users to
steer the output and explore multiple implementation alternatives
[34, 15]. Current systems in part experiment with offering users
more than one suggestion at a time, for instance, by generating

multiple code snippets and allowing users to choose among them
[1]. This remains the exception rather than the norm, even when
such features are supported, factors that might influence the code in
future developments are not explicitly highlighted and assumptions
are hidden in longer outputs, requiring effort to detect them [31].

In addition to a loss of control and potential long term negative
effects on the codebase, not involving users in decision making can
introduce another drawback. The paper Programming as Theory
Building (1985) argues that the output of the activity of program-
ming is not only the resulting code but also mental constructs
developed by the developer during the work. When developers are
not aware of decisions being made in implementing requirements
into code, for example by making decisions, they do not form a
theory or understanding of the code [18, 21].

Cognitive Overload. Cognitive load can be defined as “The load
imposed on working memory by information being presented.” [19].
Cognitive load can be divided into intrinsic cognitive load, meaning
load stemming from the task itself, extraneous load, meaning load
stemming from how the task is presented, unrelated to the task
itself, and germane cognitive load, as in productive effort used to
process information and understand the task [26] [19].

Both issues outlined previously contribute to cognitive over-
load reported by users of LLM programming assistants. Premature
outputs, as well as the persistent potential for their occurrence,
require users to continually account for these risks. Obscured im-
plementation paths similarly increase extraneous cognitive load
by necessitating users to continuously question the LLM’s outputs.
When outputs fail to meet the user’s intentions or contain bugs,
developers may spend excessive time modifying generated code
[15]. At the same time, partly in anticipation of such issues, users
spend cognitive effort upfront by writing long prompts and care-
fully setting context to minimize the likelihood of unwanted results,
leading to frustration when outputs do not meet expectations [13].

An additional factor identified in the literature as contributing
to cognitive overload is excessive amounts of information being
presented by LLM outputs at once [3, 34, 1, 31]. Assistants fre-
quently produce extended code segments that obscure essential
details, making it difficult for users to identify and comprehend
key information. As a result, developers may disregard generated
outputs entirely when they cannot easily understand them [15, 34].
This issue becomes particularly apparent when the generated code
lacks sufficient accompanying explanations [7]. Approaches that
allow users to scale the amount of information displayed according
to their preferences and needs for explanation may help address
this [3].

3 Proof-of-Concept Implementation

The prototype was developed from an idea to address the short-
comings outlined in Section 2.3. The concept is based on novel Ul
elements hereafter referred to as decision points which would ulti-
mately be integrated into LLM coding assistants. Decision points
in essence provide users with clickable concise options, instead
of text-only output when conditions are met. Decision points are
intended to augment the interaction with assistants through surfac-
ing decisions or missing information to the user and allowing them

®0 oin

Start a conversation by asking a coding question!

Figure 2: Empty Chat Interface.

to conveniently make decisions while displaying an appropriate
amount of accompanying information.

The following describes how the prototype for evaluating deci-
sion points was developed and what enables its functionality. First,
to illustrate a potential interaction with decision points, we outline
an example of a user experience, followed by an explanation of
how the prototype was implemented. We provide a description of
the most relevant aspects that enable decision points followed by
some theory on how decision points are intended to address the
identified shortcomings.

3.1 Prototype User Workflow Example

The prototype resulting from the design process named OptionPilot
is intended to support the evaluation of the idea in a user study,
and is therefore reduced to the essential functionality. Nevertheless,
the prototype successfully provides an initial understanding of
how these elements could ultimately work, as envisioned, when
integrated into programming assistants.

The general interface is a typical LLM chat, see Figure 2. Users
can interact with the underlying LLM as with any other.

Unlike other tools, OptionPilot supports the following additional
functionality. Instead of plain text answers, OptionPilot will regu-
larly, upon a user’s request, display one of two types of decision
points. A Single Decision Point, see Figure 3 and a Multi Decision
Point, see Figure 1. As interactive UI elements, decision points allow
users to make decisions highlighted for them by clicking on these
elements. In the given example Figure 3, a user requests the imple-
mentation of a start menu for a CLI game. Through the displayed
decision point, the user can choose between two ways to implement
this.

In the background, this is enabled through a system prompt that
instructs an underlying LLM to output JSON objects that are then
rendered in the displayed UL As part of the system prompt, the
LLM is instructed to assess user request for a number of factors,
such as ambiguous requests or path decisions.

Decision points are generally interactive, in single decision points,
options can be expanded and collapsed to reveal additional infor-
mation and users can select an option they want to proceed with by
clicking a button displayed for each option. Being able to respond
to questions asked by assistants by clicking on them is a simple fea-
ture, but curiously absent in existing assistants. For single decision
points, each option has a Generate Code button displayed next to
it, which will trigger a prompt that instructs the LLM to implement
the chosen option into code. Additionally, a Proceed button will
trigger instructions to continue the conversation. This option leaves

the decision about the next suitable step in the conversation, which
could be another decision point, to the LLM.

In multi decision points, instead of one single decision with two
options being displayed, two to four decisions with two options
each are being displayed simultaneously, see Figure 4. The user
may choose an option for each decision, with chosen options being
highlighted by the blue border for each decision. Recommended
options selected by the LLM are preselected when the decision
point is first displayed. Similar to single decision points, users can
click Produce Code which triggers instructions to implement code
according to selected choices. Users can generally ignore decision
points and choose to continue the interaction with other instruc-
tions. For both types of decision points, users have the option to
include additional instructions for proceeding with decisions in the
text input field.

3.2 OptionPilot Implementation Overview

A lightweight Flask* webapp was implemented to ensure basic pre-
requisites like session management. HTMX® was used to enable
some of the frontend interactivity. OptionPilot uses the OpenAI
GPT-4.1 API which proved capable enough to handle the complex-
ities of the system prompt described below, and was effective at
code generation. Experiments with less performant models led to a
considerable decrease in the user experience through less relevant
decisions and increased occurrences of answers with invalid JSON.

System Prompt. The foundation of OptionPilot’s functionality
is an iteratively designed system prompt that details the neces-
sary instructions to achieve the intended behavior of the LLM. See
Appendix A for the full prompt. The system prompt contains a de-
scription of the role and setting that the assistant is working in, as
well as relatively detailed instructions for enabling decision points.
Crucially, instructions are given for the LLM to only respond with
a specific JSON schema that contains objects that all parts of an
answer must be formatted in, as well as descriptions for how to use
them. See Section A.2 for the full JSON format. Instructions also
detail how each answer the LLM provides has to be constructed
from the following objects: (1.) text, (2) code, (3.) single decision
points and (4.) multi decision points.

The key to decision points working as intended is instructions
about when and how to include a decision point in an answer.
Instructions here include a context section about why to use them
such as to avoid low confidence assumptions, as well as guidelines
for when to use them specifically, for example occasions such as
ambiguous request, or when multiple implementation paths with
significant future tradeoffs are available.

The system prompt outlines which type of decision point should
be used in what scenario. Single decision points, which surface one
decision at a time to the user, are intended for impactful decisions
with potentially broad influences on the future of the code. Single
decision points provide additional details about the implications
of each option. Multi decision points allow users to make multiple,
less far-reaching decisions at once and provide fewer details for
each option. While enabling two types of decision points could add
complexity, it could also prove valuable for different scenarios.

*https://flask.palletsprojects.com/en/stable/
Shttps://htmx.org/

https://flask.palletsprojects.com/en/stable/
https://htmx.org/

: ®e o

You: implement a main menu for a number guessing game

To implement a main menu for your number guessing game, there are several possible
approaches for how the menu interacts with the rest of your code. A key technical decision is
whether to use a simple loop with input options or to encapsulate the menu in a dedicated
function for modularity and potential reuse. Let's decide how you'd like the main menu
structured.

Decision Point:

How should the main menu for the number guessing game be implemented?

Encapsulate main menu in a function ¥ Proceed Generate Code

Implement the menu logic inside a dedicated function (e.g., main_menu()).

Inline menu logic in main code block A Proceed Generate Code

Write the menu logic directly in the main part of the script using loops and
input statements.

This approach places all menu-related code at the top level of your script, using loops and input()
statements to control flow. It's straightforward for simple scripts, ideal for quick prototyping or if you
don't plan to expand the game much.

Pros Cons

« Simple and direct for small scripts * Less modular and harder to extend

« No need to define extra functions = Can quickly become messy as the

script grows

Ask a coding question...

Figure 3: Single decision point with an expanded toggle.

Constructing the system prompt involved significant design de-
cisions and tradeoffs. Questions arose about how much context and
guidelines to include and how much freedom to allow the LLM in
order to strike a balance between narrow instructions, which might
be less flexible in certain situations depending on user working
styles or coding tasks, and unconstrained instructions, which could
fail to achieve the desired behavior.

Interactivity. A central feature of decision points is their attempt
at introducing interactivity into the interactions with LLM coding
assistants. Although prompting techniques could in theory cover
substantial parts of the functionality that decision points provide,
the user experience could be unsatisfying. For example, when a
user wishes for more information about a decision, with a single
decision point this information is one click away by expanding the

e oo

To implement a main menu for your CLI number guessing game, it's helpful to first decide on
the available menu options and how you'd like users to interact with the menu. Typical options
could include: Start a new game, View instructions, View high scores, and Quit. Let's clarify the
specific options you want in your menu and whether you want to handle invalid user input or
loop the menu until the user chooses to quit.

Configure Your Solution

Produce Code

Select one option for each decision below. Recommended options are pre-selected.

Main Menu Options

Choose which options to
include in the main menu.

Menu Looping

Decide if the menu should
repeat until the user
chooses to quit.

Input Validation

Handle invalid or
unexpected menu choices.

You can add additional instructions below before choosing an option.

Basic Options

Include 'Start Game' and "Quit’
options only.

Simple, clean, and easy for users to
navigate.

Limited features; no instructions or
high scores.

Extended Options

Include *Start Game', ‘Instructions’,
‘High Scores’, and "Quit".

More informative and engaging for
users.

Requires more implementation
effort.

Loop Menu

Show the menu after each action
until user quits.

User can play multiple rounds or
view instructions repeatedly.

Slightly more code complexity.

Validate Input

Prompt the user again for invalid
inputs.

Moere robust and user-friendly.

Slightly more code to handle
validation.

Single Run

Menu runs once, then game or
action starts, then exits.
Simpler code logic.

User must restart the program to
play again or view other options.

No Input Validation

Invalid inputs cause the program to
exit or error.

Minimal code.

Poor user experience; prone to
crashes.

Feel free to ignore these suggestions and continue by giving follow-up commands in the input field.

Ask a coding question...

Figure 4: Multi decision point showcasing multiple decisions simultaneously.

toggle of an option. Prompting for this would reintroduce effort for
the user and would mean the answer being displayed below the
prior answers, leading to cluttered information.

The prototype enables additional interactivity through render-
ing each type of object of the JSON schema in a predefined way.
Displayed decision points include buttons, which when selected

by the user, trigger a prebuilt prompt to be sent, which includes
all necessary information to be sent depending on the button. For
example: “The user has instructed to generate code for the follow-
ing selected option: {selected_option}, with additional instructions:
{additional_instructions_from_user}”. When typical existing chat-
bots and coding assistants ask the user a question, for example at

the end of an answer “Should I give you more information about
that?”, users have to manually type their answer. This purely text
based interaction approach is at times inefficient and leaves room
for improvement.

We additionally implemented preloading for the content of the
buttons displayed for single decision points. When a user clicked
the button on a single decision point option, the corresponding
message would appear instantly in the chat window.

3.3 Addressing Shortcomings through Decision
Points

Decision points attempt to address the shortcomings identified in
Section 2.3 from multiple angles.

Instead of generating fully formed solutions upon the first re-
quest, OptionPilot presents choices to the user, allowing them to
pick between multiple implementation paths interactively. These
decision points are intended to appear at points deemed relevant,
for example, to allow users to clarify their intent. Through this
OptionPilot attempts to return control to the users and reduce
cognitive overload stemming from a range of factors.

Premature Outputs. Through decision points, OptionPilot inten-
tionally inserts a pause between an input and code output whenever
user intent or context is unclear, avoiding hallucinations to fill in
gaps. Instead of inferring a solution with incomplete information,
the system prompt is supposed to identify areas where clarification
or user input is needed, prompting users to clarify their goals or se-
lect between implementation alternatives before code is produced.
By surfacing possible implementation paths, including their im-
plications, and letting users conveniently pick between them, the
issue of developers experiencing a loss of control when using LLM
coding assistants could be addressed. By aligning code generation
more closely with actual user intent, OptionPilot could improve
code quality and reduce the need for corrections stemming from
premature outputs.

Obscuring Alternative Implementation Paths. OptionPilot attempts
to address the issue of obscured implementation paths by highlight-
ing critical decisions and their trade-offs explicitly, providing users
with an overview of possible decisions and implications of different
options. This directs the user’s intent toward cases where their
input can prevent unnecessary rework that would otherwise result
from the model making decisions based on incorrectly inferred
information.

To achieve this, the system prompt instructs the LLM to detect
points where multiple implementation paths with meaningfully
different implications exist and surface these paths to the user’s
attention through decision points. Determining what constitutes
a significant enough decision and when intent is too ambiguous
requires contextual awareness and a certain degree of model capa-
bility as well as fine-tuning of the system prompt.

The underlying assumption is that the two types of decision
points may approach this issue in different ways. Single decision
points aim to prevent significant wrong turns in high-impact deci-
sions, whereas multi decision points allow users to make several
smaller but still relevant choices quickly.

Cognitive Overload. By addressing the previously outlined issues
and through additional mechanisms, decision points could help
address high cognitive load in LLM-assisted developer work.

Decision points attempt to reduce and structure the amount of
information that users need to process at once therefore. Within
OptionPilot, relevant decisions are not hidden in an answer, but
instead highlighted explicitly by the UL Benefits and drawbacks of
different choices are explicitly and concisely outlined with positive
and negative implications highlighted in green or red for them to be
immediately identifiable therefore reducing extraneous cognitive
load. Through this, implications of the decision are made readily
available without additional prompting. In single decision points,
options are collapsible and are by default collapsed so as not to
overwhelm users with information, but to conveniently provide
additional context for an option, when the user wants it.

These aspects of decision points illustrate how they could pro-
vide advantages that could not be achieved with prompting alone.
Prompts could address part of the identified shortcomings, but the
Ul layer could add significant additional benefits such as interactiv-
ity and improved highlighting of essential information.

4 User Study Design

In order to investigate whether decision points could mitigate the
identified shortcomings, and to gain initial insights about which
mechanisms specifically could be effective, we designed a mixed-
methods, qualitative first lab study with a sample of 14 participants.
In a moderated lab session, we asked participants to work on two
sets of programming tasks with OptionPilot while decision points
were activated for one of the sets in order to draw lessons from a
direct comparison. User sessions consisted of a demographic ques-
tionnaire, two coding tasks, each followed by a short post-task
questionnaire and a semi structured exit interview. The approach
was chosen to enable an initial exploratory evaluation of the con-
cept, which could offer insights into both hypothesized effects about
addressing shortcomings, and simultaneously surface unanticipated
phenomena. The study design was reviewed and approved by the
ethics committee of the host institution under number 20250624.

The following details the user’s session flow and data collection
methods, the rationale behind the chosen programming tasks, adap-
tations made to the prototype for the study, participant selection
and sample composition, and finally, data analysis methods.

4.1 Session Flow and Data Collection

Given the novelty of the concept and the exploratory nature of the
study, we adopted a broad data collection strategy. The following
outlines the structure of the study sessions and details the methods
used to capture the intended multifaceted dataset. See Figure 5 for
an illustration of the lab sessions phases.

Sessions were conducted through a remote video call and partic-
ipants were informed about data handling procedures beforehand.
First, participants received a brief introduction to the study back-
ground and procedure, then the coding environment was set up on
the participants’ computer. Subsequently, participants completed a
short demographic questionnaire capturing contextual information
such as their job role, and level of experience with Python.

Phase Session Steps Description
Introduction & e Participant joins remote call and is introduced to the study background and procedure
<
'% Environment Setup e The coding environment is setup on participant's computer
[}
]
¢ {
o Demographic Questionnaire * Participants answer a demographic questionnaire
Programming Task 1 (20 mins) ¢ Participants work on the first task, 1 minute to skim the task set, 20 minutes for coding
;-OOO:_& 7;’;’(?[;e)rZ'::Tl;z/ezj e Randomized: Starting task set and tool mode (with or without decision points)
ption/vantiia, e
s
S : . Brief ti ire about task i d tool
= Post-Task Questionnaire 1 o Brief questionnaire about task experience and tool usage
A
= '
E Programming Task 2 (20 mins) e Participants work on the second task with the remaining task set and switched tool
Remaining Task & Tool e Same procedure and data collection as Task 1
Post-Task Questionnaire 2 ¢ Participants answer the same questionnaire as after Task 1 for direct comparison
c Semi-Structured Exit Interview * Open-ended questions about the participants experience with both tool conditions
£ (10-20 mins) .. ipr . .
a * Participants reflect on and rate specific aspects of decision points
[}
v
% {
e Session Completion e Session ends; typical duration: ~80 minutes

Figure 5: Overview of the user study procedure, illustrating the sequence of questionnaires and tasks.

4.1.1 Programming Tasks. Following the demographic question-
naire, participants were asked to work on the first of two program-
ming task sets. The rationale for designing the tasks is detailed
further in Section 4.2. Coding sessions began with an explanation
of the basic functionalities of OptionPilot, for example the Clear
History button, which cleared the chat history. As the prototype
is fairly minimalist and focused on the novel features, detailed in-
structions were mostly provided when issues or misunderstandings
arose during the sessions. Participants could use any development
environment of their choice in order to reduce unnecessary hur-
dles and keep coding environments close to participants’ usual
workflows. Because varying but generally lower levels of Python
experience were anticipated, potential differences introduced by
using different environments were accepted.

In the study, participants used two versions of the prototype:
Option with decision points enabled and Vanilla where they were
disabled. Both the task set order and the starting mode were ran-
domized across participants in order to isolate the effect of the
mode differences and control for confounding biases caused by
learning effects or differences in the task sets. Before working on
the Option mode task set, participants received a brief introduction
to the functionality of decision points. Participants were given one

10

minute to skim the task set initially and subsequently 20 minutes
for coding.

We informed participants that while measuring their coding
performance was one objective, the primary goal was to under-
stand their reasoning and approach when interacting with decision
points. We recorded participants’ screen during the coding sessions
to examine interactions with decision points and to capture further
contextual information. Participants were also asked to think aloud
during the coding sessions to capture real-time thought processes.
Think-aloud protocols can allow insights into cognitive processes
and are straightforward to explain, while not materially shifting
attention away from the actual task [29]. Following think-aloud
protocol procedure, the researchers primarily listened without inter-
vention during the coding sessions [2]. When participants initiated
an interaction, for example when unsure about rules, capturing
qualitative meaningful data was prioritized over strictly avoiding
any interference.

After the initial task, participants were given a brief post-task
questionnaire and were then asked to solve the remaining task set
following the same procedure with interchanged tool modes and
task sets.

4.1.2 Post-Task Questionnaire and Exit Interview. Following both
coding sessions, participants were asked to answer identical brief

post-task questionnaires with scale questions. See Section B.1 for
the full questionnaire. The questionnaire asked validating ques-
tions such as “The tasks were clearly understandable for me”, and if
significant bugs occurred in order to contextualize participant expe-
riences and verify the reliability of the study setup. Other questions
were aimed at capturing comparative data between conditions, for
example: “Approximately how much time did you spend consid-
ering different solution approaches (e.g. different data models)?”
The results are later used to contextualize other results. Question-
naire items were deliberately limited to asking the most insightful
questions to avoid fatigue [12].

Finally, following both coding sessions and post-task question-
naires, a semi structured exit interview lasting around 10-30 min-
utes was conducted to capture participants’ reflections and opinions
to allow for open-ended exchanges between the researcher and par-
ticipants. See Section B.5 for the questions. The interviews were
audio recorded.

In addition to the open-ended questions about participants’ expe-
riences in both conditions, participants were asked to assess certain
individual aspects of decision points such as perceived quality of
results. They were also asked to rate on a Likert scale from 1-7
whether they would appreciate having this aspect supported by
their currently used Al coding assistant. Participants were asked
about the following aspects of decision points:

o Explicitly being made aware of potential implementation
decisions.

e Being asked to make implementation decisions preemptively
instead of potentially revising output.

e Consistently being presented advantages and disadvantages
of potential implementation solutions.

e Through decisions being made upfront, before code was
generated, less LLM-generated code had to be examined.

o The interactive UL

Finally, participants were asked to compare the study tasks to
their real-world work and if they had any suggestions for improve-
ments or further development.

4.2 Task Design

Designing the programming tasks was a key part of implementing
the user study. The task sets had to allow the expected behavior to
surface while satisfying a range of requirements around the general
setup of the user study. We designed the tasks not primarily to
test some technical ability but to evoke the necessity for planning
ahead, decision making, and weighing implementation options.

The tasks created for the user study had to fulfill the following
requirements

e Exploratory in nature, meaning nontrivial and open-ended.
To ensure the potential applicability of decision points, par-
ticipants should be confronted with situations that prompt
reflection on alternative approaches and trade-offs.

e Solvable by a range of programming experience levels, re-
flective of the sample group.

o Objectively ratable, to allow for a small quantitative layer.

o Feasible in the given study environment, for example, not
requiring extensive setup.

11

o Sufficiently challenging for LLM assistance to be genuinely
useful.
e Quickly comprehensible.

As two comparable tasks were needed to allow for the com-
parison of conditions, we implemented two sets of tasks with 10
sub-tasks each. The full set can be found under Section B.2. Each
set had an overall theme. Set 1: Develop an inventory management
system for a small shop, Set 2: Implement a number guessing game.
Participants were given 20 minutes to work through the list of tasks
sequentially with the goal of solving as many tasks as possible.

By dividing each task set into ten sub-tasks, we ensured, that
the overall difficulty level was both manageable across varying
experience levels and progress was objectively measurable between
participants and conditions. The parts were designed to allow even
inexperienced participants to complete at least some tasks, though
completing all tasks was unlikely within the time frame.

Importantly, the task design ensured that the approach taken
to solve a given sub-task influenced the subsequent tasks, and re-
sults of an earlier task regularly were the starting point for a later
task. For example in set 1, Inventory management: The first task
involved loading data from a text file, depending on how this was
implemented, it directly affected how easily participants could later
add backup functionality in a following sub-task. This was an im-
portant aspect, as it meant that participants who anticipated future
tasks could let this anticipation guide their approach, allowing
them to save time or effort in subsequent tasks, thereby potentially
demonstrating the benefits of decision points.

We asked all participants to use Python to avoid introducing
additional variables. Participants generally had limited experience
with Python, and we hypothesized that using a less familiar lan-
guage would mean participants had to spend more time thinking
about potential implementation paths than if they used a language
they were more familiar with. Additionally, Python syntax is con-
sidered relatively simple for beginners, potentially shifting the
focus towards other aspects such as decisions. Finally, to mitigate
constraints stemming from the prototype or the tasks, we asked
participants to write all code within a single file.

4.3 Prototype Adaptations

After we drafted an initial version of the prototype and task-sets,
both were piloted and refined iteratively. We made adaptations
to the prototype in order to streamline certain aspects of the par-
ticipant sessions and reduce unnecessary repeated prompting by
participants. For example, we added instructions to the system
prompt that all code should be written in Python. Adaptations were
necessary to enable Vanilla mode, which enabled a comparison
with a baseline. We designed the study to compare two conditions
that differed only in the presence or absence of decision points. We
implemented a toggle in the settings menu that enabled switching
between the two modes. When set to Vanilla mode, the system used
a shortened version of the system prompt with instructions related
to decision points removed and the other functional components
remained unchanged.

To enhance the overall usability of OptionPilot and make the
study setup more comparable to integrated LLM coding assistants,
we added functionality that enabled continuous access to the code

file on the participants’ computer in which they wrote their code.
This was enabled by the Google’s File System Access API [5]. This
feature allowed OptionPilot to access the latest version of partici-
pants’ code with every prompt and include it as context in the LLM
request, eliminating the need for participants to manually add this
context for prompts.

4.4 Participant Selection and Sample
Composition

In order to capture diverse perspectives, we aimed to recruit de-
velopers with varying levels of coding experience and different
familiarity with LLM programming assistants. Participants were
required to have at a minimum two years of programming experi-
ence and prior use of LLM coding assistants to ensure that limited
experience would not affect their ability to work effectively. The
inclusion of varying levels of coding experience was expected to
allow for insights into possible differences between user groups.
Participants were recruited at a medium sized software company in
Berlin, Germany. Additionally participants had to have used python
at least once but could not be experienced in it. All participants were
informed prior to the study about the data handling procedures
and were asked to fill out a consent form.

The recruited sample of 14 participants consisted in a majority
of professional programmers and a few participants with adjacent
roles. An overview of each participants’ mode and task sequence is
provided in Table 1. All but two participants were between 35-45
years old with an approximate average nine years of programming
experience. A majority reported spending 15-19 hours a week pro-
gramming. Most participants reported using GitHub Copilot, or
the JetBrains Al Assistant currently or at some point in the past,
with their degree of usage and perception of LLM coding assistants
varying considerably.

During the participant sessions P5, P12, and P14, interruptions
or protocol deviations occurred and this data was excluded from
the quantitative analysis. Their qualitative data was not excluded,
since we did not deemed the deviations so severe as to make their
opinions irrelevant.

4.5 Data Analysis

Following the participant sessions, we aggregated and analyzed
data from all sources to gain a broad understanding of participants’
experiences, behaviors, and perceptions. Given the exploratory
nature of the study, we analyzed the data to allow for comprehensive
qualitative findings. Although we gathered quantitative data from
the questionnaires and task completion scores, the limited sample
size and differing participant approaches led us to interpret this
data only as supporting evidence.

The core of the analysis was based on the qualitative data from
the coding session recordings and open-ended exit-interview ques-
tions. After transcription, the analysis broadly followed the ap-
proach of the Framework Method [8]. After an initial sighting of
the data of the first four participants, we drafted an initial frame-
work to categorize participants’ statements and behavioral cues
into themes and themes into categories. Themes captured both par-
ticipants’ remarks as well as behavior, and occasionally additional
observations like tool behavior.

12

Table 1: Participants overview.

ID Starting Tool Starting Task Interaction style
P1 Vanilla 2 Varied engagement
P2 Vanilla 1 Reads thoroughly
P3 Vanilla 1 Varied engagement
P4 OptionPilot 1 Reads thoroughly
P5* OptionPilot 1 Reads thoroughly
P6 OptionPilot 2 Briefly skims options
P7 Vanilla 1 Briefly skims options
P8 Vanilla 2 Briefly skims options
P9 Vanilla 2 Varied engagement
P10 OptionPilot 2 Reads thoroughly
P11 Vanilla 2 Briefly skims options
P12* OptionPilot 2 Moderate evaluation
P13 OptionPilot 1 Varied engagement
P14* OptionPilot 2 Reads thoroughly

*Excluded from quantitative data due to protocol deviations or incomplete data.

After we collected this initial set of themes, we grouped instances
from participant sessions that supported these themes in a table.
Following this analysis of the screen recordings, we enriched iden-
tified themes with contextual data from the other data sources in
the findings section to provide context to the results where this was
sensible. We subsequently categorized the resulting set of themes
into higher level categories, which served as the basis for the struc-
ture of the findings section. An example: Category: “Opinions about
always displaying pros and cons”; Theme: “Appreciated for clarity
of structure”.

Some quantitative data was captured from questionnaires and
participants’ scores from the coding tasks. We combined this data
into one table and anonymized it where necessary. To offer a slight
layer of quantitative analysis, we used basic statistics to compare, for
example, task completion performance across different categories
such as tool mode or task set.

Ultimately we integrated all data while drafting the findings sec-
tion in an iterative process of theme identification and refinement
of categories in order to capture a genuine image of participants’
experiences. Qualitative themes were supported by questionnaire
analysis where applicable.

5 Findings

In this section, we present findings from the qualitative first, mixed-
method lab study combining data from session recordings, ques-
tionnaires, and others.

After providing some overview and context, we describe how
participants interacted with the prototype and their overall as-
sessments of decision points in order to establish a foundation to
assessing their potential for addressing the shortcomings. Next,
we focus on participants’ assessment of individual aspects of de-
cision points. Here, participants’ reflections provided particularly
rich insights. Therefore we made them a central focus of the data
analysis.

Participants’ working style and overall approach to solving the
task differed notably. Overall, participants appreciated being able to

steer the code generation process and valued the clarity created by
consistently highlighting implications as well as other aspects of the
UL Participants emphasized that the perceived utility of decision
points was closely tied to how relevant the presented information
appeared within the given context.

5.1 Overview and Context of Collected Data

Given the novelty of the proposed approach and the exploratory
design of the research, we designed the study with the expectation
that unanticipated behaviors or phenomena would emerge. The
statistical findings must be interpreted with caution due to the
small sample size and other mentioned factors, and will only be
referenced as supportive information.

The prototype generally functioned as expected, and participants
had no difficulties understanding the tasks, see appendix Figure 21
and Figure 19. One factor we did not fully anticipate was the extent
to which individual participants’ approach differed. This variation
produced a diverse dataset that enabled analysis from multiple
perspectives, but also required interpreting some results in this
light.

5.1.1 Prototype Behavior and Reliability. The prototype performed
largely as intended, and participants engaged with it effectively
without requiring detailed guidance. We revised the initial instruc-
tions after the first sessions based on early observations and par-
ticipant feedback. The primary factor occasionally affecting per-
formance was lengthy conversation histories. This issue was most
pronounced in Option mode, where the extended system prompt
and more complex responses likely contributed. Participants rarely
used the Clear History button unless instructed to do so.

Bugs were mostly minor but did occur, see Figure 20. A recurring
issue occasionally caused contextual data from the first coding
task set to carry over into the second. Although issues such as
invalid JSON responses from the LLM were mostly addressed during
development, they occasionally occurred. Participants reported
more bugs when using Option mode, see Figure 20.

Generated decision points and their options were mostly appro-
priate for the given context. One factor that notably influenced
participant experiences was the frequency and type of decision
points displayed. In certain sessions, only a limited number of de-
cision points appeared, with some participants encountering only
one type of decision point. Three participants did not encounter
one of the two types during their use of Option mode. To ensure at
least minimal experience with both types, these participants were
subsequently given a short demonstration of the missing type.

This variation partly depended on individual participants’ work-
ing style, with participants’ writing highly specific prompts trigger-
ing fewer decision points. In this way, the prototype functioned as
intended. At other times, decision points failed to appear seemingly
at random, adding to the varied frequency and decision point types.

5.1.2 Session Dynamics and Researcher Interventions. During the
coding sessions, we intentionally minimized interactions, but in-
tervened where required for practical reasons. As qualitative data
was prioritized, we provided brief clarifications or reminders about
the tool and environment, for example, suggesting using the Clear
History button, or intervened when bugs occurred. The extent to

13

which participants verbalized their thought processes varied, for
example some did not articulate their first impressions of decision
points.

At times, participants interpreted questionnaire items differently
and required clarification or brief explanations. The way exit inter-
view questions were introduced varied depending on how much
participants had already mentioned and discussed beforehand. En-
gagement with the exit interview questions varied, with some par-
ticipants offering detailed reflections, while others provided shorter
responses.

5.1.3 Factors shaping Participant Performance and Responses. Par-
ticipants’ general attitude towards Al coding assistants varied widely.
Some fully embraced using them in their work, while others re-
ported prior negative experiences and only sporadic use. Those
with a more skeptical attitude tended to use the tool less actively,
instead writing more code by themselves, even when the language
was unfamiliar, and they subsequently encountered fewer decision
points. The majority of participants commented, their lack of fa-
miliarity with Python was a limiting factor for their performance,
and, that it increased their reliance on the LLM’s support. However,
several participants preferred to initially reason about the necessary
logic for a task by themselves and prompt the LLM in detail about
how to implement a feature.

A significant factor influencing performance was the learning
curve associated with the setup, language, and overall workflow.
Figure 6 presents the participants’ scores across categories and
shows a performance increase in the second task. Participants at
times reported finding set 2 more challenging. However this assess-
ment is not supported by the participant scores.

Overall, the influence of the mode on participant performance
shows a slight increase in scores from Vanilla to Option mode, as
seen in Figure 6. In Option mode, participants reported spending
more time on exploring different solution alternatives and spend-
ing more time deliberating on them, see Figure 7, and Figure 8. In
Vanilla mode, participants rarely reflected on alternative imple-
mentation approaches, typically adhering directly to the suggested
solutions.

4.90

w

B

Average Result
N w

=

ot Tasro nd Tas¥ cet®

POt il
At g opion™ " ver!

A
Task 5 qask
Categories

Figure 6: Average results by participants across categories.

Compared to other coding assistants, OptionPilot lacked usability
features such as the ability to directly insert generated code into the
editor, and this was noted by participants. Participants regularly
commented on the missing features.

While other aspects were mostly minor, participants spent con-
siderable time transferring generated code between the chat inter-
face and their editor. This additional effort diverted their attention
from more reflective aspects of the study, such as evaluating differ-
ent implementation paths.

5.1.4 Comparability to Real-World Scenarios. How participants
perceived differences between the study setup and real work sce-
narios could provide important context for interpreting the results
and identifying directions for future research. Participants occa-
sionally shared these reflections spontaneously during the sessions,
and were also explicitly asked to compare their experience with
typical work situations in the exit interview, see Appendix B.

A key difference mentioned compared to their everyday work
was that, unlike in the study session, they usually do not start
from a blank canvas but work within an existing codebase. In real
projects, they must consider significantly more contextual factors
when implementing new features.

Parallel to the study setup, participants described that in their
regular work they had similar freedom to implement features as
they see fit and in that they explore, compare, and select between
multiple possible implementation paths.

Participants also reported spending less time reflecting on their
solutions before code was produced, as well as focusing less on the
code quality than they would have in a work scenario, as they knew
the code they produced would not be used further. To counter this
anticipated effect, the task design was only partially successful and
aimed to induce decisions into the tasks by ensuring that different
implementation choices had to be made that affected subsequent
tasks differently.

5.2 Participants Usage and Evaluation of
OptionPilot

We describe how participants engaged with OptionPilot during the
study and how they evaluated their overall experience with the
tool. Overall, participants intuitively made use of the interface and
expressed optimism for the potential of the underlying idea. They
appreciated the ability to steer the interaction through decision
points but emphasized that their usefulness depended on their
appropriate timing and frequency within the current workflow
context.

5.2.1 Decision Point Interaction Patterns. Participants quickly be-
came comfortable using the tool after a brief introduction. Sev-
eral themes in participants’ interactions with OptionPilot emerged.
Those participants who started by using the tool for code generation
generally progressed through the task list while other participants
leaned more towards writing their own code and using the assistant
to fill in gaps. When using the tool, one participant chose to write
their own instructions while others just copied the task instructions,
which was explicitly allowed.

When participants who planned out more of the code by them-
selves and mostly referred to the assistant to fill gaps, this caused
the tool to output fewer decision points and more often output code
immediately. In general, participants who started with their own
code moved towards using the assistant more and more over both

14

task sets, as they seemed to notice they could make more progress
this way.

In Option mode, participants tended to spend significantly more
time engaging with different path options, see Figure 7, Figure 8. In
Vanilla mode, participants progressed more quickly and tended to
accept code suggestions without contemplating different paths. P4
commented while working in Vanilla: “Here, I didn’t think about
what alternatives to the given approach there could have been”

PTQ Q6: How often did you use the tool to compare the advantages and
disadvantages of different solution alternatives?

o 10 m Vanilla

g 8 OptionPilot

Q

0

x ©

s

15

C o4

[

E

é 2

o [
9 & & &

<& &8 &€
~ > «I\r

Response Value

Figure 7: Results of Post-Task Questionnaire Question 6.

PTQ Q7: Approximately how much time did you spend considering
different solution approaches (e.g. different data models)?

mmm Vanilla (Average: 3.6%)
OptionPilot (Average: 14.5%)

IS o ©

Number of Responses
~N

o

Q oo de oo
S S
; v 2
Response Value

Figure 8: Results of Post-Task Questionnaire Question 7.

Participants engaged with decision points in most cases when
they were presented. Only in rare cases did participants ignore
decision points and instead prompt for alternative solutions. En-
gagement with decision points varied notably across participants,
with some carefully reading the implications of each option, while
others made quick decisions without further reflection. Similarly,
with multi decision points, some participants contemplated each
individual decision while, others tended to follow the preselected
recommendations. Especially when participants perceived a de-
cision to be too granular or disliked both options they tended to
choose one option quickly without considering their implications.

5.2.2 Overall Opinions on Decision Points. Participants generally
regarded decision points as helpful and appreciated their presenta-
tion in the chat interface. Participants expressed appreciation for
the ability to steer the output by choosing options as well as for a
variety of other reasons. For example P8 commented: “I appreciated
being able to choose between options, to be able to intervene a bit

A recurring theme was that participants appreciated decision
points only when they appeared at appropriate moments in the
interaction. Participants noted that decision points increased mental
load when they had to engage with them, especially when the
implications of different choices were not directly obvious and
required anticipating future consequences. P2 said: “When you
get options, you also have to read them.” Participants expressed
similar views regarding the accompanying information provided
for decisions and options. The perceived contextual relevance of
the decision points was a key factor shaping participants’ overall
evaluations. P1 said: “The information should be to the point”

Expanding on this, participants expressed interest in being able
to control when decision points were shown or how frequently
they appeared. P12 specifically suggested functionality enabling
users to define in detail where decision points should appear, for
example, when a certain error occurs. In general, participants ac-
tively engaged with the concept and suggested further ways to
expand it. P11 commented: “It would be interesting to see this in
a more complex task, how the decisions branch out” Some raised
concerns that only displaying two options at a time could itself
obscure alternative implementation paths.

5.3 Participants Assessment of Individual
Aspects of Decision Points

We examine participants’ opinions and reflections on individual
aspects of decision points. In addition to participants’ comments
during Option mode, we asked participants to assess five specific
aspects of decision points individually in the exit interview, see
Figure 9.

These assessments offered deeper insights into which elements
participants perceived as most beneficial, which caused friction and
how they influenced the overall experience.

Participants generally appreciated the explicit surfacing of key
decisions and the structured display of advantages and disadvan-
tages, though many expressed a preference for being simultaneously
able to immediately access accompanying code.

~

6.18
296 6.00 5.80 5.73
2 g 5.20
.. @5
>
234
B
.3
o @
o)
oo
] ©
>0
LT
- eSO quepdt " ication® et Sam “\terac(\o\’\S
rfac!

erind .
A2 e _\,\-\gh\'\g\"‘mg N \ess

Evaluated Aspects

Figure 9: Average participant agreement with the statement
“I would like this feature to also be available in the AI pro-
gramming assistant I currently use” for specific aspects of
OptionPilot.

15

5.3.1 Explicitly Surfacing Decisions. We asked participants whether
they appreciated that decision points explicitly highlighted poten-
tial implementation paths. Almost all participants valued this aspect,
reporting that it helped them actively steer the output. Participants’
attention was actively directed towards the decisions.

Participants frequently noted that by consciously making deci-
sions, the perceived quality of the results increased, particularly
over the long term. Participants theorized about several mecha-
nisms for this effect, including deliberate reflection on decision
implications and the correction of inaccurate assumptions. P14
commented: “The tool made me break down the task into steps and
made me think ahead, what exactly do I want to do here”

P3 appreciated the approach for avoiding overly agreeable behav-
ior: “I want to know about the pros and cons of different approaches
instead of just being told I'm right”, while P13 used the term tunnel
vision to describe interactions with other assistants.

Participants saw particular value in being made aware of de-
cisions in areas where they had limited experience or for more
complex tasks. P11 noted: “When you run into complexities, I can
imagine that decision points could help to avoid missing informa-
tion that a regular assistant would just brush over”

As briefly outlined in Section 5.2.2, the most commonly reported
perceived drawback of the approach was having to at times make
decisions that were deemed unnecessary. P11 commented: “When
you’re going for speed, having to focus on the decisions can feel
less straightforward” Some participants reported feeling frustrated
when decision points highlighted decisions or options they did not
perceive as relevant. P3: “This is annoying right now”

5.3.2 Preemptive Decision-Making. Decision points were designed
to prompt users to make implementation choices proactively, rather
than being presented with a solution first and potentially adjusting
it subsequently. Participants’ opinions regarding this were mixed.
While many appreciated being able to steer the output preemptively,
others expressed reservations and held contrasting views. P5 stated:
“Then you don’t have to read pages of stuff you maybe didn’t want
to”, while P9 offered an opposing view: “Maybe you’d rather first
see what is being produced and then correct it”

Actively engaging with a decision led participants to think more
deliberately about the implications of different implementation
paths. P13: “It motivates you to work a little more consciously.” In
some cases, this actively avoided work in the following subtasks
through this. For example, P1: “When I can purposefully go in the
right direction from the beginning, that’s definitely a big advantage.”

This behavior stood in contrast to participants’ conduct while
working with Vanilla mode, where they tended to adopt the tools
proposed solutions without further reflection, modifying generated
code only when it proved ineffective for the current task. While P14
commented: ‘I just tried the given code but didn’t pay attention to
any details”, in many cases, participants did not perceive this as
problematic. Although participants appreciated being able to make
decisions easily, they simultaneously expressed disapproval of not
being able to examine associated code, as the code could provide
them with further information about what each approach might
entail. P3: “In reality I'd rather have the code directly.”

5.3.3 Consistently Highlighting Implications. The consistent dis-
play of potential benefits and drawbacks of options was generally

appreciated. Participants valued not just the inclusion of the in-
formation but also the visual highlighting. P1 commented: “I find
highlighting pros and cons very valuable”, “I perceived the mental
load as lower with Options because it showed the implications
of options” When participants perceived a decision as impactful,
they frequently studied the implications and mentioned this when
reflecting on the reasons for certain decisions.

Participants consistently appreciated being able to grasp informa-
tion quickly through the UL P11: “I liked seeing the pro’s and con’s,
because you can grasp it quickly” The color highlighting in particu-
lar was appreciated for allowing fast comprehension. P1 about the
difference between using OptionPilot and ChatGPT: “There they
don’t highlight it so clearly, pros in green and cons in red”

Nevertheless, as in previous themes, the display of pros and
was only appreciated while the information was deemed relevant.
P13 commented: “It’s use case dependent, often I'm not in a mode
where I would want to read that.” Single decision points initially
hid further detailed information for each option, including pros
and cons behind a toggle and participants intuitively interacted
with this feature. Some participants expressed a preference for the
toggle to be expanded by default.

5.3.4 Delayed Necessity to Read Code. One potential benefit of
decision points is allowing users to make preemptive decisions in
plain language, therefore potentially reducing the amount of code
users need to read compared to tools that generate code immediately.
This was only partially reflected in participants’ experiences and
was ranked the lowest of all individually evaluated aspects, see
Figure 9. Some participants expressed appreciation for this, P7: “I
didn’t have to read first, OK what does this block of code do, is it
correct?” or P4 about using OptionPilot: “I already had an idea of
what would be in the code, so I could check it quicker” Nevertheless,
most stated that they would in any case read all code, especially in
a professional setting, and that this was not a perceived benefit of
decision points mirroring opinions highlighted in Section 5.3.2.

5.3.5 Interactivity. Decision points allow users to interact with
them by clicking instead of prompting, potentially saving time and
effort. For example, when presented with a decision, instead of
manually prompting “Implement option 17, decision points allowed
users to click on the Generate Code button. Participants generally
appreciated this feature, see Section 5.2.2. While comments like
P8: “I liked that, I don’t always want to describe everything” were
common, interactions with decision points during the sessions were
in part less in depth as expected.

The Proceed button for single decision points caused confusion
and was rarely used, even after further explanations. Participants
overwhelmingly selected Generate Code instead of the Proceed
button, which could have led to additional decision points being
generated, reducing opportunities for further reflection on the in-
teractive aspects of the interface. Nevertheless, after a short initial
introduction, participants intuitively and consistently made use of
the interactivity of decision points.

Several participants proposed expanding the interface with ad-
ditional buttons, for instance, a None of the Listed Options
button for situations where the provided options were inadequate.

16

6 Discussion

In the following, we discuss the findings of the user study as they
relate to the research questions as well as the broader context
of LLM interactions. We examine how the observed participants’
behavior and feedback reflect the assumptions underlying decision
points to understand what makes decision points effective.

Decision points generally demonstrated potential to address pre-
mature outputs, obscured implementation paths, and high cognitive
load, with their effectiveness depending on contextual relevance.
Beyond their application in code generation, the interactive fea-
tures that allow users to quickly and conveniently communicate
their intent could hold value for a wider range of LLM chatbot use
cases.

6.1 Summary of Findings

Overall, decision points showed considerable potential and were
received positively by participants. Participants consistently ap-
preciated the explicit presentation of decisions, the clarity with
which implications were presented, and the resulting ability to
steer the code generation process. Measuring quantitative perfor-
mance improvements within the study proved challenging due to
the limited sample and varying participant approaches. Neverthe-
less, the study yielded valuable qualitative insights and established
a robust foundation for further investigations of the concept. The
findings offer actionable guidance on refining decision points and
clues for potential integrations into existing LLM coding assistants.

6.1.1 Prototype Performance and Participant Behavior. The pro-
totype successfully delivered on the intended concept, surfacing
relevant decisions to the user in an intuitively usable, interactive UL
The generated JSON objects were appropriately populated by the
LLM and rendered in the Ul leading to a consistent user experience.

Longer conversation histories at times led to decreased answer
quality, possibly introduced in part by the generally documented
loss of performance in multi-step conversations in LLMs[14]. Oc-
casional bugs in context handling during Option mode may have
contributed to this, and could have influenced the lower average
task completion score for Option mode seen in Figure 6.

As previously mentioned, iteratively drafting the system prompt
in order to effectively outline instructions for which decisions to
surface to the user at what stage is key for achieving the intended
positive impact. The balance struck for OptionPilot proved gener-
ally suitable for the study, with participants who prompted more
narrowly were appropriately presented with fewer decision points.
However, this factor alone does not fully account for the observed
variation in the frequency and types of decision points generated
among participants. Future systems should prioritize determining
the right level of granularity through an effective system prompt,
as well as potentially enabling mechanisms for users to control this
granularity.

The purpose of implementing OptionPilot was not to replicate
the experience of integrated LLM coding assistants, but to enable
participants to engage with decision points in a way that yielded
meaningful insights into their potential. However, certain missing
features, such as automatic code insertion, affected participants’
experiences and somewhat limited the inferential strength of the
results.

When decision points were enabled in Option mode, partici-
pants generally spent more time considering different solution
alternatives While several factors may have influenced overall per-
formance, the additional time spent reflecting on different solutions
did not lead to a measurable performance improvement.

Participants’ general approach to solving the tasks ranged from
directly copying all tasks into the chat window to using it to fill in
gaps. Similarly, engagement with decision points differed notably
between participants. Although the perceived relevance of a de-
cision generally influenced how much participants engaged with
it, individual differences played a role, with some leaning towards
reading each individual option and others towards making quick
decisions. The results were likely further influenced by participants’
general attitude towards LLM assistants, their degree of language
familiarity, and individual motivation. While participants quickly
grasped the concept of decision points and intuitively used them,
these contextual factors should be considered when evaluating their
applicability to real-world programming scenarios.

6.1.2 Participants’ Assessment. Participants responded positively
to decision points and valued their clarity and structure. They
appreciated the ability to choose between different options and
expressed optimism about the potential of the concept. Participants
reported that decision points gave them a sense of control and
reduced the overly agreeable behavior seen in other assistants.

While being prompted to decide temporarily increased cogni-
tive effort, this load represents constructive germane load when
decision points are effective. Participants agreed with the assess-
ment that this approach holds potential to lower the overall mental
load through reduced need for corrections and better long term
code quality overall. When decision points appeared too frequently,
or if they were perceived as overly detailed, the temporary in-
crease in cognitive effort was perceived as a burden by participants.
Therefore, decision points both reduced and increased mental load
depending on their relevance.

Participants appreciated how decision points highlighted the
implications of each option and presented information in a compre-
hensible way. They emphasized that consistent visual cues, such as
green text for advantages and red text for drawbacks, helped them
quickly assess trade-offs.

The fact that decision points prompted users to make decisions
before code was generated received mixed reactions. Participants
expressed a preference for being shown corresponding code imme-
diately alongside the information in decision points, as this could
allow for additional insights into the implications of an option.

The interactive elements of the interface were generally well
received, however these features received limited attention, and
without targeted questions, were only mentioned occasionally.

6.2 Interpretation and Implications

We interpret the findings of the study in relation to the research
questions and derive practical and theoretical learning from this
analysis. We connect observed participants’ behavior and feedback
to the assumptions underlying the concept of decision points, and
we examine to what extent the concept demonstrates potential to
address the identified shortcomings.

17

6.2.1 Premature Outputs (RQT). To address RQ1, we examined
the potential of decision points to mitigate premature outputs. We
understood premature outputs as the generation of code or accom-
panying artifacts such as explanations, while making premature
assumptions, which can lead to misaligned solutions, unnecessary
revisions, and a loss of user’s control. Decision points attempted
to address premature code generation by deliberately inserting a
pause between the user’s input and the model’s output, prompting
the user to clarify their intent in order to avoid low confidence
assumptions. This additional reflection on the goal and conscious
decision making represents additional germane load.

Findings from the study indicate that this mechanism could be
a very effective tool in the right scenarios. Participants generally
appreciated decision points for enabling them to steer the output
preemptively rather than correcting undesired results. By explic-
itly prompting users to clarify their intent in case of ambiguities,
decision points appear to have potential for countering the com-
mon tendency of LLMs to make uncertain assumptions in case of
missing information. Participants believed that this mechanism
would lead to better long term effects, though the study could not
quantitatively demonstrate this.

While premature outputs based on incorrect assumptions are
clearly undesirable and should be avoided, other situations are more
nuanced. Participants criticized instances where they were required
to engage with decisions they considered irrelevant. Finding the
right balance between preventing incorrect assumptions and avoid-
ing unwanted interruptions strongly depends on the situational
context. In this regard, multi decision points may hold potential for
an effective approach, as they allow users to quickly review and
resolve several decisions simultaneously. Through an interface that
surfaces multiple underlying assumptions to the user at once, users
could conveniently steer or correct assumptions in cases where
deeper engagement with individual decisions is not warranted.

6.2.2 Obscured Implementation Paths (RQ2). To answer RQ2, we
studied, how effective decision points could be in addressing ob-
scured alternative solution paths by explicitly surfacing key de-
cisions, and highlighting the implications and trade-offs between
alternative choices.

In this regard, the concept showed clear potential. Participants
consistently valued being made aware that multiple paths forward
existed, particularly in cases involving unfamiliar tasks, complex
scenarios or, decisions with long term implications. Participants
stated that decision points helped them avoid the lack of trans-
parency in other assistants. The consistent presentation of trade-
offs and implications was appreciated for conveniently highlighting
relevant aspects which would otherwise require attention or effort
to obtain.

Decision points perceived as inadequate forced users to focus
on choices they considered irrelevant, therefore introducing ad-
ditional extraneous cognitive load, and should be avoided. This
surfaced during the coding sessions, particularly since participants
at times did not perceive the produced code as relevant in the long
term. Achieving the right balance for deciding when to surface
decisions will depend on careful context engineering, fine tuning of
the system prompt, and the reasoning capabilities of the underlying
LLMs.

Participants preferred seeing the generated code immediately
alongside the presented options. This observation forms a key point
in our analysis. When implementation paths are explicit and users
can quickly comprehend the context of the generated code, much
of the potential burden associated with premature outputs can
be avoided. By displaying implementation paths or revealing un-
derlying assumptions with decision points, users can recognize
potential mismatches quickly and potentially intervene, while the
accompanying code may provide additional relevant information
for assessing an option. In short, displaying assumptions and key
decisions next to generated code could allow users to comprehend a
solution quickly while offering detail in case they seek additional in-
formation. Although participants expressed mixed reactions about
not receiving code along with decision points, the overall cognitive
effort involved in reviewing code might nonetheless be decreased
through a reduced necessity to review code generated under incor-
rect assumptions.

6.2.3 High Cognitive Load (RQ3). RQ3 investigated the extent
to which decision points hold the potential to mitigate cognitive
overload when using LLM coding assistants by addressing the pre-
viously discussed shortcomings or through additional mechanisms.
Beyond the previously discussed aspects, decision points demon-
strate potential to reduce cognitive load by imposing a consistent
structure and highlighting presented information, enabling users
to efficiently identify relevant information.

Conversely, decision points should be presented selectively to
ensure the cognitive effort required for deliberate decision-making
does not exceed their potential positive effects such as reducing
extraneous load. These findings align with previous studies that
found that add-ons to chat interfaces need to be balanced against
the additional cognitive load they potentially introduce [31, 4].

One mechanism of decision points with the potential to address
high extraneous cognitive load is collapsible information within an
output. By hiding additional information about an option by default
but making it readily available without additional prompting effort,
this approach counters information overload and was appreciated
by participants. This concept could be explored further in future
implementations. As users preferred immediately being able to
access code, directly including generated code for each option under
an additional toggle could be a promising approach.

Another mechanism to avoid cognitive load when faced with
a decision could be defaults or recommended decisions. Multi de-
cision points included recommendations for each decision, while
single decision points did not. Participants expressed a preference
for defaults or recommendations being presented in case they were
unsure or did not perceive the decision to be relevant, and men-
tioned this for single decision points.

Decision points introduced interactivity into the usually text
based interactions with LLMs, reducing the need for prompting.
While features like using the toggle to reveal more information for
an option were intuitively used by participants, they mostly only
commented on this when being prompted about it. Some partici-
pants expressed ideas for further buttons such as Generate more
Options or None of the Above Options. Introducing additional
interactive elements may offer significant further potential to im-
prove the experience of using LLM coding assistants or LLMs in

18

general. However, further exploration is needed to identify how and
where this could prove effective. Through aspects like interactivity,
decision points demonstrate that the concept holds potential for re-
ducing cognitive load over what could be achieved with prompting
alone.

6.3 Limitations and Future Work

While the study provided valuable insights into the potential of
decision points and their implications, open questions remain re-
garding the applicability to real world programming scenarios. The
concept of decision points and specific aspects of them could hold
potential beyond their application in code generation.

6.3.1 Limitations from Methodology. A more narrowly scoped ap-
proach could have reduced ambiguity and ensured more consistent
participant engagement with the core research questions. Option-
Pilot represented a simplified prototype compared to integrated
LLM coding assistants, reducing the transferability of the findings

Additionally, the study setup did not fully reflect authentic devel-
opment situations in multiple aspects. As mentioned by participants,
developers typically do not start from a blank canvas, but need to
take existing context into account. Decision points would need to
effectively account for this context to present useful options, which
may pose a significant challenge.

Participants generally had limited Python experience. Examining
how users experienced with a language engage with decision points
could be insightful.

Future research could include more specialized evaluations, for
example, assessing the difference in perceived mental load using
specialized established measures. In general, future research could
investigate the concept with additional subgroups and increased
sample sizes to expand the findings discussed here. This study did
not capture long-term effects, such as how participants might adapt
their behavior when anticipating decision points or how decision
points could impact the overall code quality in the long term.

6.3.2 Refining the concept of Decision Points. There are several
promising directions for future work to build on the initial findings
discussed here. Future work could explore additional functionality,
such as offering users more interactivity, for example, a buttons for
generating additional options for a decision.

OptionPilot presented two types of decision points, both show-
ing potential value in slightly different situations. Future iterations
could explore whether to consolidate or add further designs for
different situations or user preferences. As each additional type of
decision point would require some degree of additional familiariza-
tion by users, adding several types comes with drawbacks.

These themes highlight the importance of preventing cognitive
overload for users. Precise contextual understanding by the assis-
tant is therefore critical, to ensure that decision points are presented
only when relevant. Future implementations could explore different
mechanisms for allowing users to control how frequently decision
points appear or at which occasions specifically. This aligns with
prior research suggesting that giving users greater control over their
assistants may enhance the interactions effectiveness [20]. Part of
this refinement could involve distinguishing between functional

refining requirements for a solution and technical implementation
decisions concerning how to realize them.

Broader questions remain regarding how future workflows in-
volving LLM coding assistants and how the notions of augmentation
and automation, will evolve. A stronger theoretical foundation is
needed to account for the rapid and continuous innovations in
the field of LLM assisted programming. This research could have,
for example, benefited from a standardized framework enabling
direct comparison of decision points against a benchmark. Future
research could examine how decision points may integrate with or
enable emergent trends like agent-driven workflows.

6.3.3 Applications Beyond Coding. Although we initially designed
the concept of decision points for code generation, the underlying
principles are transferable to a broader range of LLM applications.
Making key choices explicit to clarify user intent can similarly
benefit related activities in software engineering and beyond. The
underlying assumption is that similar challenges, such as insuf-
ficient intent clarification or hidden assumptions, occur in other
areas where LLMs are used. For instance, when prompting an assis-
tant to generate documentation, decision points could be presented
for adjusting aspects like the intended audience or desired level of
detail. When generating a script for a presentation with a general
purpose LLM chatbot, the chatbot could display a multi decision
point allowing the user to adjust parameters such as tone, level
of formality, or structure, thereby helping the user steer the out-
put. Our findings suggest that in such cases, an initial draft of
the generated presentation, based on the models best assumptions
could be displayed in addition to the decision point, highlighting
assumptions and path decisions.

Additionally, the interactive features of decision points could
feasibly be integrated into a wide range of LLM chatbot interactions
with relatively little effort. For instance, when an LLM chatbot
prompts a user with a question such as “Should I do X”, the chatbot
could incorporate a button that lets users confirm the action with
a single click, eliminating the need for prompting. Pre-loading
the contents of these buttons, as implemented in single decision
points, could make the interaction highly responsive, which could
be valuable in certain situations.

Likewise, the expandable design of single decision points could
serve as a lightweight mechanism for improving information acces-
sibility on longer chatbot responses. Toggles in general purpose or
specialized chatbots could allow users to hide or show additional
information on demand without overwhelming the main output or
requiring additional prompting.

7 Conclusion

We introduce the concept of decision points as an interactive, path-
oriented approach to LLM-driven code generation. We developed
OptionPilot as a proof-of-concept to demonstrate the concept and
present findings from initial user experiences stemming from a
mixed-methods, qualitative first user study. The core concept of
decision points is the addition of Ul elements to LLM chat inter-
faces that would prompt the user to make explicit choices rather
than relying on potentially inaccurate assumptions, therefore con-
sciously steering the output of LLM-based coding assistants. Instead
of generating a solution immediately after a single prompt, decision

19

points offer a lightweight, structured way to surface alternative
implementation paths or to prompt users to clarify ambiguous
instructions.

While results stem from an early-stage prototype and would
benefit from further validation, the study showcased the potential
of decision points to mitigate premature outputs (RQ1), increase
user control by surfacing implementation paths (RQ2), and through
a combination of this, as well as other factors, reduce cognitive
load under certain conditions (RQ3). Findings indicate that careful
calibration of the system instructions is required to ensure that
decision points appear with appropriate frequency and content.

The graphical highlighting of decisions and their implications
enabled participants to quickly grasp alternative implementation
paths and assess their suitability compared to typical LLM outputs,
which vary in structure and obscure underlying decisions. We find
that the two types of decision points we implemented may be ef-
fective in different scenarios, which raises questions about possible
future designs. Future work could evaluate the long-term use of
decision points, integrated into IDE-based assistants, in real-world
programming scenarios in order to build upon the findings of this
study.

In the study, participants expressed a preference for being shown
the generated code alongside the corresponding decision points.
These findings imply that premature outputs are problematic pri-
marily when the underlying design decisions and assumptions for a
given code output remain obscured. Providing users with informa-
tion underpinning a solution, for instance, through a multi decision
point, could enable users to interpret the corresponding code more
effectively and overall gain a more holistic understanding compared
to only being presented with code or a decision point. In this way,
a future decision point design that surfaces decisions and under-
lying assumptions alongside code for a default option, potentially
accessible via a toggle, could prove effective.

Certain features of decision points, such as interactive buttons
for confirming actions or collapsible sections for additional infor-
mation, may be valuable beyond coding assistants. The concept of
decision points illustrates how interactive mechanisms could en-
hance user agency and transparency across human-AI collaboration
scenarios. The central challenge is to recognize existing limitations
of LLM assistants and to develop mechanisms that address them
through user input in the most convenient way possible.

Disclosure

The code editor Cursor was used during the implementation of the
prototype and for parts of the data analysis, for example writing
Matplotlib scripts. OpenAI ChatGPT GPT-5 was used for checking
and improving language and spelling in the text as well as certain
LaTeX editing tasks. OpenAI ChatGPT GPT-40 and GPT-4.1 were
used for certain minor research tasks. The author was employed at
the company from which study participants were recruited. This
affiliation did not influence the voluntary nature of participants or
the analysis of the results.

Acknowledgments

I want to thank everyone who discussed the ideas with me, pro-
viding valuable directions and feedback along the way. My sincere

thanks to all participants for spending their time and energy on
contributing to the project. I am especially grateful to my supervi-
sors for their guidance and support in evaluating and refining this
concept. I also wish to thank my employer for providing me with
the opportunity to pursue this work. Special thanks to everyone
who reviewed and provided feedback on earlier versions helping
to improve the overall quality of this work. Finally, I would like
to extend thanks to Florian Luchterhand for his valuable help and
support during key points of this work.

References

(1]

[10]

[11]

[12]

[13]

[16]

Shraddha Barke, Michael B James, and Nadia Polikarpova. 2023. Grounded
copilot: how programmers interact with code-generating models. Proceedings
of the ACM on Programming Languages, 7, OOPSLA1, 85-111. https://doi.org/1
0.1145/3586030/.

M. Ted Boren and Judith Ramey. 2000. Thinking aloud: Reconciling theory and
practice. IEEE Transactions on Professional Communication, 43, 3, (Sept. 2000),
261-278. https://doi.org/10.1109/47.867942.

Valerie Chen, Alan Zhu, Sebastian Zhao, Hussein Mozannar, David Sontag,
and Ameet Talwalkar. 2025. Need help? designing proactive ai assistants for
programming. In Proceedings of the 2025 CHI Conference on Human Factors in
Computing Systems, 1-18. https://doi.org/10.1145/3706598.3714002.

Ruijia Cheng, Titus Barik, Alan Leung, Fred Hohman, and Jeffrey Nichols. 2024.
Biscuit: scaffolding llm-generated code with ephemeral uis in computational
notebooks. In 2024 IEEE Symposium on Visual Languages and Human-Centric
Computing (VL/HCC). IEEE, 13-23. https://doi.org/10.1109/VL/HCC60511.2024
.00012.

Chrome Developers. 2024. The file system access API: Simplifying access to
local files. Accessed: 2025-05-25. (2024). https://developer.chrome.com/docs/ca
pabilities/web-apis/file-system-access.

Sarah Fakhoury, Aaditya Naik, Georgios Sakkas, Saikat Chakraborty, and
Shuvendu K Lahiri. 2024. Lim-based test-driven interactive code generation:
user study and empirical evaluation. IEEE Transactions on Software Engineering.
https://doi.org/10.1109/TSE.2024.3428972.

Angela Fan, Beliz Gokkaya, Mark Harman, Mitya Lyubarskiy, Shubho Sen-
gupta, Shin Yoo, and Jie M Zhang. 2023. Large language models for software
engineering: survey and open problems. In 2023 IEEE/ACM International Con-
ference on Software Engineering: Future of Software Engineering (ICSE-FoSE).
IEEE, 31-53. https://doi.org/10.1109/ICSE-FoSE59343.2023.00008.

Nicola K Gale, Gemma Heath, Elaine Cameron, Sabina Rashid, and Sabi Red-
wood. 2013. Using the framework method for the analysis of qualitative data in
multi-disciplinary health research. BMC Medical Research Methodology, 13, 1.
Ziyang Guo, Yifan Wu, Jason D Hartline, and Jessica Hullman. 2024. A decision
theoretic framework for measuring ai reliance. In Proceedings of the 2024 ACM
Conference on Fairness, Accountability, and Transparency, 221-236. https://doi.o
rg/10.1145/3630106.3658901.

Kunal Handa et al. 2025. Which economic tasks are performed with ai? evidence
from millions of claude conversations. arXiv preprint arXiv:2503.04761. https:
//doi.org/10.48550/arXiv.2503.04761.

Xinyi Hou et al. 2024. Large language models for software engineering: a
systematic literature review. ACM Transactions on Software Engineering and
Methodology, 33, 8, 1-79. https://doi.org/10.1145/3695988.

JL Hughes, AA Camden, and T Yangchen. 2016. Rethinking and updating
demographic questions: Guidance to improve descriptions of research samples.
Psi Chi Journal, Volume 21. https://www.researchgate.net/profile/Tenzin-Ya
ngchen-2/publication/315939732_Rethinking_and_Updating Demographic
_Questions_Guidance_to_Improve_Descriptions_of Research_Samples/link
s/59baa93aa6fdcca8e55dceb5/Rethinking-and-Updating-Demographic-Ques
tions-Guidance-to-Improve-Descriptions- of -Research-Samples.pdf.

Ranim Khojah, Mazen Mohamad, Philipp Leitner, and Francisco Gomes de
Oliveira Neto. 2024. Beyond code generation: an observational study of chatgpt
usage in software engineering practice. Proceedings of the ACM on Software
Engineering, 1, FSE, 1819-1840. https://doi.org/10.1145/3660788.

Philippe Laban, Hiroaki Hayashi, Yingbo Zhou, and Jennifer Neville. 2025. Llms
get lost in multi-turn conversation. arXiv preprint arXiv:2505.06120. https://doi
.org/10.48550/arXiv.2505.06120.

Jenny T Liang, Chenyang Yang, and Brad A Myers. 2024. A large-scale survey
on the usability of ai programming assistants: successes and challenges. In Pro-
ceedings of the 46th IEEE/ACM international conference on software engineering.
IEEE Computer Society, 1-13. 1SBN: 9798400702174 https://doi.org/10.1145/35
97503.3608128.

Jiawei Liu, Chunqiu Steven Xia, Lingming Wang, and Yuyao Zhang. 2023.
Is your code generated by ChatGPT really correct? Rigorous evaluation of
large language models for code generation. Advances in Neural Information

20

(17]

(18]

(19]

[21]

[22]

[25]

[26]

[27]

[29]

[30]

(32]

(33]

(34]

(35]

Processing Systems, 36, (Dec. 2023), 21558-21572. https://doi.org/10.48550/arXi
v.2305.01210.

Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and
Brad Myers. 2024. Using an llm to help with code understanding. In Proceedings
of the IEEE/ACM 46th International Conference on Software Engineering, 1-13.
https://doi.org/10.1145/3597503.3639187.

Peter Naur. 1985. Programming as theory building. Microprocessing and micro-
programming, 15, 5, 253-261.

Fred Paas and John Sweller. 2014. Implications of cognitive load theory for
multimedia learning. The Cambridge Handbook of Multimedia Learning, Second
Edition, (Jan. 2014), 27-42. https://doi.org/10.1017/CB09781139547369.004.
Muhammad Raees, Inge Meijerink, Ioanna Lykourentzou, Vassilis-Javed Khan,
and Konstantinos Papangelis. 2024. From explainable to interactive ai: a litera-
ture review on current trends in human-ai interaction. International Journal of
Human-Computer Studies, 189, 103301. https://doi.org/10.1016/J.IJHCS.2024.10
3301.

ratfactor.com. 2025. Go read Peter Naur’s "Programming as theory building"
and then come back and tell me that LLMs can replace human programmers.
Accessed: 2025-04-27. (Apr. 2025). https://ratfactor.com/cards/naur-vs-1llms.
Steven I Ross, Fernando Martinez, Stephanie Houde, Michael Muller, and Justin
D Weisz. 2023. The programmer’s assistant: conversational interaction with a
large language model for software development, 491-514. https://doi.org/10.11
45/3581641.3584037.

Jaakko Sauvola, Sasu Tarkoma, Mika Klemettinen, Jukka Riekki, and David
Doermann. 2024. Future of software development with generative ai. Automated
Software Engineering, 31, 1, 26. https://doi.org/10.1109/MS.2023.3300574.
Agnia Sergeyuk, Yaroslav Golubev, Timofey Bryksin, and Iftekhar Ahmed. 2025.
Using Al-based coding assistants in practice: State of affairs, perceptions, and
ways forward. Information and Software Technology, 178, (Feb. 2025), 107610.
https://doi.org/10.1016/j.infsof.2024.107610.

Priyan Vaithilingam, Tianyi Zhang, and Elena L Glassman. 2022. Expectation
vs. experience: evaluating the usability of code generation tools powered by
large language models, 1-7. https://doi.org/10.1145/3491101.3519665.

Jeroen JG Van Merrienboer and John Sweller. 2005. Cognitive load theory
and complex learning: recent developments and future directions. Educational
psychology review, 17, 2, 147-177. https://doi.org/10.1007/S10648-005-3951-0.
Thomas Weber, Maximilian Brandmaier, Albrecht Schmidt, and Sven Mayer.
2024. Significant productivity gains through programming with large language
models. Proceedings of the ACM on Human-Computer Interaction, 8, EICS, 1-29.
https://doi.org/10.1145/3661145.

Justin D Weisz, Shraddha Vijay Kumar, Michael Muller, Karen-Ellen Browne,
Arielle Goldberg, Katrin Ellice Heintze, and Shagun Bajpai. 2025. Examining the
use and impact of an ai code assistant on developer productivity and experience
in the enterprise. In Proceedings of the Extended Abstracts of the CHI Conference
on Human Factors in Computing Systems. ACM New York, NY, USA, 1-13.
https://doi.org/10.1145/3706599.3706670.

Barbara M Wildemuth. 2016. Applications of social research methods to ques-
tions in information and library science. Bloomsbury Publishing USA. 1sBN:
1440839050.

Jingfeng Yang, Hongye Jin, Ruixiang Tang, Xiaotian Han, Qizhang Feng, Haom-
ing Jiang, Shaochen Zhong, Bing Yin, and Xia Hu. 2024. Harnessing the power
of llms in practice: a survey on chatgpt and beyond. ACM Transactions on
Knowledge Discovery from Data, 18, 6, 1-32. https://doi.org/10.1145/3649506.
J.D. Zamfirescu-Pereira, Eunice Jun, Michael Terry, Qian Yang, and Bjoern
Hartmann. 2025. Beyond code generation: llm-supported exploration of the
program design space. In Proceedings of the 2025 CHI Conference on Human
Factors in Computing Systems. ACM New York, NY, USA. 1sBN: 9798400713941.
https://doi.org/10.1145/3706598.3714154.

Huan Zhang, Wei Cheng, Yuhan Wu, and Wei Hu. 2024. A pair programming
framework for code generation via multi-plan exploration and feedback-driven
refinement. Proceedings - 2024 39th ACM/IEEE International Conference on Au-
tomated Software Engineering, ASE 2024, (Oct. 2024), 1319-1331. https://doi.org
/10.1145/3691620.3695506.

Zibin Zheng, Kaiwen Ning, Qingyuan Zhong, Jiachi Chen, Wenqing Chen,
Lianghong Guo, Weicheng Wang, and Yanlin Wang. 2024. Towards an under-
standing of large language models in software engineering tasks. Empirical
Software Engineering 2024 30:2, 30, 2, (Dec. 2024), 1-38. https://doi.org/10.1007
/510664-024-10602-0.

Xiyu Zhou, Peng Liang, Beiqi Zhang, Zengyang Li, Aakash Ahmad, Mojtaba
Shahin, and Muhammad Waseem. 2025. Exploring the problems, their causes
and solutions of Al pair programming: A study on GitHub and Stack Overflow.
Journal of Systems and Software, 219, (Jan. 2025), 112204. https://doi.org/10.101
6/].JSS.2024.112204.

Albert Ziegler, Eirini Kalliamvakou, X. Alice Li, Andrew Rice, Devon Rifkin,
Shawn Simister, Ganesh Sittampalam, and Edward Aftandilian. 2024. Measuring
GitHub Copilot’s impact on productivity. Communications of the ACM, 67, 3,
(Feb. 2024), 54-63. https://doi.org/10.1145/3633453.

https://doi.org/10.1145/3586030/
https://doi.org/10.1145/3586030/
https://doi.org/10.1109/47.867942
https://doi.org/10.1145/3706598.3714002
https://doi.org/10.1109/VL/HCC60511.2024.00012
https://doi.org/10.1109/VL/HCC60511.2024.00012
https://developer.chrome.com/docs/capabilities/web-apis/file-system-access
https://developer.chrome.com/docs/capabilities/web-apis/file-system-access
https://doi.org/10.1109/TSE.2024.3428972
https://doi.org/10.1109/ICSE-FoSE59343.2023.00008
https://doi.org/10.1145/3630106.3658901
https://doi.org/10.1145/3630106.3658901
https://doi.org/10.48550/arXiv.2503.04761
https://doi.org/10.48550/arXiv.2503.04761
https://doi.org/10.1145/3695988
https://www.researchgate.net/profile/Tenzin-Yangchen-2/publication/315939732_Rethinking_and_Updating_Demographic_Questions_Guidance_to_Improve_Descriptions_of_Research_Samples/links/59baa93aa6fdcca8e55dccb5/Rethinking-and-Updating-Demographic-Questions-Guidance-to-Improve-Descriptions-of-Research-Samples.pdf
https://www.researchgate.net/profile/Tenzin-Yangchen-2/publication/315939732_Rethinking_and_Updating_Demographic_Questions_Guidance_to_Improve_Descriptions_of_Research_Samples/links/59baa93aa6fdcca8e55dccb5/Rethinking-and-Updating-Demographic-Questions-Guidance-to-Improve-Descriptions-of-Research-Samples.pdf
https://www.researchgate.net/profile/Tenzin-Yangchen-2/publication/315939732_Rethinking_and_Updating_Demographic_Questions_Guidance_to_Improve_Descriptions_of_Research_Samples/links/59baa93aa6fdcca8e55dccb5/Rethinking-and-Updating-Demographic-Questions-Guidance-to-Improve-Descriptions-of-Research-Samples.pdf
https://www.researchgate.net/profile/Tenzin-Yangchen-2/publication/315939732_Rethinking_and_Updating_Demographic_Questions_Guidance_to_Improve_Descriptions_of_Research_Samples/links/59baa93aa6fdcca8e55dccb5/Rethinking-and-Updating-Demographic-Questions-Guidance-to-Improve-Descriptions-of-Research-Samples.pdf
https://www.researchgate.net/profile/Tenzin-Yangchen-2/publication/315939732_Rethinking_and_Updating_Demographic_Questions_Guidance_to_Improve_Descriptions_of_Research_Samples/links/59baa93aa6fdcca8e55dccb5/Rethinking-and-Updating-Demographic-Questions-Guidance-to-Improve-Descriptions-of-Research-Samples.pdf
https://doi.org/10.1145/3660788
https://doi.org/10.48550/arXiv.2505.06120
https://doi.org/10.48550/arXiv.2505.06120
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.1145/3597503.3608128
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.48550/arXiv.2305.01210
https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1017/CBO9781139547369.004
https://doi.org/10.1016/J.IJHCS.2024.103301
https://doi.org/10.1016/J.IJHCS.2024.103301
https://ratfactor.com/cards/naur-vs-llms
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1145/3581641.3584037
https://doi.org/10.1109/MS.2023.3300574
https://doi.org/10.1016/j.infsof.2024.107610
https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1007/S10648-005-3951-0
https://doi.org/10.1145/3661145
https://doi.org/10.1145/3706599.3706670
https://doi.org/10.1145/3649506
https://doi.org/10.1145/3706598.3714154
https://doi.org/10.1145/3691620.3695506
https://doi.org/10.1145/3691620.3695506
https://doi.org/10.1007/S10664-024-10602-0
https://doi.org/10.1007/S10664-024-10602-0
https://doi.org/10.1016/J.JSS.2024.112204
https://doi.org/10.1016/J.JSS.2024.112204
https://doi.org/10.1145/3633453

Appendix
A Implementation Documentation
A.1 OptionPilot System Prompt

nn

prompt_system_optionPilot =

#re BEGINNING OF SYSTEM PROMPT******

*** BEGINNING OF DESCRIPTION OF YOUR ROLE ***

You are a helpful coding assistant and will be asked to assist a user in a coding task.

You should have a conversation with the user and help them with the task.

You should always format your responses in a specific JSON schema that is provided to you.

You should always respond with nothing else than this valid JSON schema! It’s extremely important that you follow this schema.

Your response must be a valid JSON array of objects, where each object can contain a combination of answer_text, code_output,
decision_point and/or multiple_decision_points fields.

In the following you will find additional instructions about how to use these objects to answer user requests

You should follow the following process to answer the user request:

1. Understand what the user is trying to do. - For this, consider all the information that is available to you: The prior conversation including
potential prior choices the user has made, the content of the context file, the user request, etc.

2. Come up with a response to the user request.

3. Reason about whether there are any points in the answer that would make it appropriate to offer decision points. - For this, consult the
description that you were given about things that you should consider giving the users multiple options for.

4. Come up with the revised response that now possibly contains a decision point or multi decision points.

*** END OF DESCRIPTION OF YOUR ROLE ***

*** BEGINNING OF DESCRIPTION OF OUTPUT FORMAT ***

Here is a description of the different objects that an answer can be composed of: - answer_text: For explanations, advice, or questions to
the user. - code_output: For providing Python code relevant to the task. - single decision_point: For offering the user a choice between 2
options, with each decision point containing a description and at least two options. - Each option must have a title, a description, pros, and
cons. - Use this in case there is a single big decision that the user has to make that will have a big impact for example for further extendability.
- multi_decision_points: For offering the user a choice between multi decision points. - multi_decision_points can have up to 5 decisions. -
For every decision here you should offer exactly 2 options. - Only answer with a multi decision points object if there are at least 3 decisions
to be made. - For every decision you should make a suggestion for the user to choose in the JSON.

In the following you will find a description of when to use a multi decision point and when to use a single decision point.

In the JSON schema you will find the exact fields that you should return for each type of object

You are free to combine these fields within each object as appropriate for the situation. - You can include as many objects as needed in
the response array, and you may order them in any way that best supports a natural and helpful conversation. - For example, your response
can contain a sequence such as text, code, text, or text followed by a single decision point, or other combinations. - (there are some exceptions
for decision points that will be described in the following).

*** END OF DESCRIPTION OF OUTPUT FORMAT ***

In the following the JSON schema is described that you must follow to answer the user request including descriptions of what the
different fields should contain.

*** BEGINNING OF RESPONSE SCHEMA ***

response_schema_json_OptionPilot

*** END OF RESPONSE SCHEMA ***

*** BEGINNING OF DESCRIPTION OF HOW TO OUTPUT CODE SNIPPETS ***

Here are instructions that you should follow when outputting code snippets:

When you answer with a code snippet that is supposed to replace an existing piece of code! - Always add an explanation as a text block
telling the user which bit of code is supposed to be replaced. - So for example if you want to replace a specific function, include a text block
in the response that says what part of code the code snippet is supposed to replace.

When a change is complex and requires code to be added or changed in multiple places, - you should always output a text block that
says which lines of code the new code snippets are supposed to replace.

When it is appropriate to suggest code changes at multiple places in one response, return these changes as multiple individual code
snippet responses. - In this case you should for every code snippet also output a text block with explanations / instructions. - The output
should then have alternating text blocks and code snippet blocks.

It’s better to add a bit too much explanation to code than too little.

*** END OF DESCRIPTION OF HOW TO OUTPUT CODE SNIPPETS ***

*** BEGINNING OF INSTRUCTIONS FOR WHEN AND HOW TO USE DECISION POINTS ***

21

Background information on why you should use decision points: - Use this information to better understand your role and how to
answer the user request. - Current LLM-based coding tools often provide "point solutions" upon a user request, immediately generating
code, even if there are many open questions about how the code should be implemented, which has a range of negative effects. - This could
occur for example when: - Users may have entered incomplete information and the LLM just makes assumptions on what the best way to
proceed. - LLMs may make incorrect assumptions about underspecified details or propose solutions prematurely in multi-turn conversations,
leading to unreliability; - This has a range of negative effects, for example: - Obscuring alternative implementation paths and their trade-offs;
- Cognitive overload when users have to skim long responses of an LLM in order to understand the underlying decisions; - Users may accept
generated code without reading it and without realizing it has significant implications for the future of their project.

You as a helpful coding assistant should address these issues by, when appropriate, instead of immediately generating code, surfacing
decisions to the user and asking for their input on the decision. - For this, the JSON schema that you should respond with has two types of
decision objects: "decision points" and "multi decision points". - Both types of decision points will be displayed in a concise way to the user,
and the user will be able to select one of the options.

Detecting potential decision points is a crucial part of your role as a helpful coding assistant. - Therefore, you should answer with
decision points if you detect the following: - You need to clarify the user’s intent or gather more information before proceeding with code
generation, especially when the initial request is ambiguous or lacks sufficient detail. - The task requires an architectural decision or presents
multiple valid implementation approaches. - These decisions can have far-reaching implications for the future extensibility or capabilities
of the code the user is developing. - There are significant trade-offs associated with different solutions that the user should be aware of
(e.g., performance, complexity, dependencies, scalability). - By presenting these, you support the user in making informed and effective
implementation decisions. - The user is in an "exploration mode" and is unsure how to proceed, needs help brainstorming potential solutions,
or is decomposing a problem. - Offering structured options helps them navigate the design space and build understanding. - When a complex
task needs to be broken down, and there are multiple valid steps or sub-problems to address first.

You have the ability to answer to the user request with "single decision points" or "multi decision points" - Here are instructions for
when you should answer with which

When to use "single decision points" - When you only want to ask the user for a single decision you should always offer a decision_point
and never a multiple_decision_points. - For big decisions that the user has to make. Decisions that are worth weighing pros and cons of
different implementations. - Things that have far reaching implications for the future of the code that the user is developing. - For example
when choosing a database, a single decision point should be used for deciding between sqgl and no-sql

When to use "multi decision points" - Multi decision points are for smaller decisions that the user has to make, things that are less
consequential and have less far-reaching implications for the future of the code. - A multi decision points section is used to offer multiple
smaller decisions to the user at once. - Use this when multiple decisions have to be addressed at once. - Here are some examples for when to
offer multi decision points: - When there are a couple of smaller decisions to be made before implementing a function that the user has
asked for. - Handling of edge cases. - When a couple of smaller things have to be decided that could be relevant later in the development. -
Try to understand what the user is developing. Anticipate what decisions lie ahead when implementing this. - If you offer multi decision
points, this should always be the last point in a conversation before producing code for the user. - This does not mean you always have to
offer multi decision points before returning code to the user. - If all things that are relevant have been addressed you can just answer with
code and an accompanying text. - But often it’s a good idea to clear up smaller but relevant last decisions with multi decision points before
returning code to the user. # If the user is asking for assistance with a task where a couple of bigger decisions have to be made, then you
should clear up these decisions by offering the user several "single decision points" sequentially, waiting for the user input on each decision,
then answering with the next single decision point.

Do not offer any decision points for very minor decisions. - But do adapt to the scope of the project that the user is working on. -
Meaning when the user is working on the early stages of a project and you can’t tell what the user is trying to develop, offer more decision
points that clear up possible hurdles for that project later on. - In this case it would be a good idea to clear up smaller things with multi
decision points. - In case everything is clear or there are no implications relevant for the future of the code that the user is developing, do
not offer any decision points. - In this case it is completely valid if you answer with a code snippet response or a text response. - For example
do not ask about how to name a function if it doesn’t have any implications for further functionality of the code. - Do not offer decisions for
things that have already been decided! - Make sure you maintain a complete understanding of what decision the user has already made and
do not ask for decisions on things that have already been decided.

*** END OF INSTRUCTIONS FOR WHEN TO USE DECISION POINTS ***

prompt_task_specific_instructions

#e*END OF SYSTEM PROMPT****** "

A.2 OptionPilot System Prompt JSON Response Schema

22

"answer_text": "A text answer to the user request, explanations, advice, or clarification questions for the user",
"code_output": "An output of code that is relevant to the user request, Python code to help with the user's task",
"decision_point": {

"decision_point_description": "A short description of what has to be decided",
"options": [
{
"title": "Title of the option",
"description": "A short description of what choosing this option would entail",
"in_depth_description": "A more in depth description of what choosing this option would entail",

"pros": ["List of 1-3 pros of choosing this option"],
"cons": ["List of 1-3 cons of choosing this option"]

1
"multiple_decision_points": {
"decisions": [

{
"title": "Title of the multi decision point",
"short_description": "Short description of the decision in this decision point",
"options": [
{
"id": "Assign a unique id to this option",
"title": "Title of the option",
"short_description": "Short description of the option",
"pros": "Short Text about the main pros of choosing this option",
"cons": "Short Text about the main cons of choosing this option"
b
{
"id": "Assign a unique id to this option",
"title": "Title of the option",
"short_description": "Short description of the option",
"pros": "Short Text about the main pros of choosing this option",
"cons": "Short Text about the main cons of choosing this option"
}
1,
"suggested_decision_option_number": "Answer with the id of the recommended option for this decision"
}

A.3 OptionPilot Option Confirmation Prompts

prompt_confirming_option_single_decision_point =
The user has selected the following option from the list for you to proceed.
*%% BEGINNING OF USER SELECTED OPTION x*x
{option_from_previous_response}
%% END OF USER SELECTED OPTION #%xx

The user has selected the following way to proceed:
%% BEGINNING OF USER SELECTED WAY TO PROCEED xxx
{user_selected_way_to_proceed}

**%x END OF USER SELECTED WAY TO PROCEED *xx

The user also has the option to provide additional instructions:
%% BEGINNING OF ADDITIONAL INSTRUCTIONS FROM USER ##**

23

{additional_instructions_from_user}
*%% END OF ADDITIONAL INSTRUCTIONS FROM USER *xx

Here is the up to date content of the file that the user is working on:
%% BEGINNING OF CONTEXT OF FILE #%x

{context_of_file}

*%% END OF CONTEXT OF FILE **x%

Proceed with implementing the option that the user has selected while taking into account all the
information that is available to you.

- This should take into account previous decisions that the user has made.

- It should also consider the context of the file that the user is working on.

- If the user has provided them, incorporate the additional instructions that the user has provided.

nwnn

nwin

prompt_confirming_multi_decisions =
The user has made the following selections:
**% BEGINNING OF SELECTIONS #*xx
{selections_data}

*%% END OF SELECTIONS *xx%

The user also has the option to provide additional instructions:
*%% BEGINNING OF ADDITIONAL INSTRUCTIONS #**x
{additional_instructions_from\user}

*%% END OF ADDITIONAL INSTRUCTIONS **x

Here is the up to date content of the file that the user is working on:
*%% BEGINNING OF CONTEXT OF FILE **x*

{context_of_file}

*%% END OF CONTEXT OF FILE **x%

Your job now is to produce code that implements the solution based on the options that the user has selected.
- This should take into account previous decisions that the user has made.

- It should also consider the context of the file that the user is working on.

- If the user has provided them, incorporate the additional instructions that the user has provided.

Return the code that you have produced in the defined format, along with potential further text explanations
if needed.

nwn

B User Study Material

24

B.1 Demographic Questionnaire

Demographic Questionnaire

How old are you?

What is your current job role?

Ihre Antwort eingeben

How many years of programming experience do you have?

0-1 2-3 4-5 6-7 8-10 11-15 16 or more

How many hours do you typically spend programming in a week?

0-4 5-9 10-14 15-19 20-30 31 or more

How much experience do you have using Python?

1 = Never Used 2 3 4 5 [7 = Constant Use

Whiich LLM-based tools (e.g., ChatGPT for research, etc.) do you use when programming?
Ihre Antwort eingeben

Figure 10: User-Study Material - Demographic Questionnaire.

25

B.2 Task Set1

Task: Number Guessing

Introduction:

- The goal is to develop a robust, extensible number-guessing game that supports the functionalities listed below.
- Program in Python. Install Python if it is not already installed.

- The application should be fully usable via the terminal.

- The entire code should be written in a single file.

- Do not use external libraries. Use only built-in standard libraries, no external packages.

- The tasks are designed so that there are multiple possible implementations; choose your own approach.

- Implement the functions in the order they are listed below.

- Begin by skimming the task list for 1 minute.

- Afterwards, you have 20 minutes to try to complete as many subtasks as possible.

Figure 11: User-Study Material - Taskset 1 Introduction.

26

Task: Number Guessing

Tasks:

1. Main Menu and Random Numbers

Implement a main menu in the command line:

- While the application is running, a new random number between 1-5 should be generated every 6 seconds in the
background.

- All functions described below should be accessible from the main menu.

2. Game Logic

From the main menu, the function "Play" should be accessible.

- A prediction of the next generated number can be made and points can be bet on it.
- If the prediction is correct, a reward is paid out: 10x the stake.

- Continue using the timer and random number from Task 1.

3. Accounts and Stakes
Implement an account where predictions can be placed, rewards received, and the current point balance can be viewed.

- Before each round, the stake amount should be set. Winnings/losses are credited to the account.
- Starting balance: 1000.

4. Admin Menu

Implement an admin menu accessible from the main menu.

- From the admin menu, various admin functions (listed in the next steps) should be accessible.
- Access should be protected by a simple password.

5. Extended Mode
Admins should have the option to switch the app into an "Alternative Mode".
- In extended mode, rewards are doubled.

6. Game History
Implement a function that displays the history of all draws, predictions, and results.

7. Adjust Points
Admins should be able to manually adjust the point balance of any account.

8. Persistent Data Storage
All game and account data should remain after restarting the program.
- Storage should be in an external file.

9. Multiplayer / Account Switching

It should be possible to switch between multiple accounts.
- Each account has its own point balance.

- Accounts do not need to be password protected.

10. Additional Game Mode
Enable betting on two consecutive results.
- Reward for correct prediction of both rounds = 20:1.

Figure 12: User-Study Material - Taskset 1 Tasks.

27

B.3 Task Set 2

Task: Inventory Management System

Introduction:

- You are to implement a robust and extensible inventory management system for a small business.
- You are provided with an initial inventory file called "inventory.txt".

- Program in Python. Install Python if it is not already installed.

- The application should be fully usable via the terminal.

- The entire code should be written in a single file.

- Use only built-in standard libraries, no external packages.

- The tasks are designed so that there are multiple ways to implement them; choose your own approach.
- Implement the functions in the order they are listed below.

- Begin by skimming the task list for 1 minute.

- Afterwards, you have 20 minutes to try to complete as many subtasks as possible.

Figure 13: User-Study Material - Taskset 2 Introduction.

28

Task: Inventory Management System

Tasks:

1. Load Initial Data

Implement loading of the initial data from inventory.txt into the application.

- Each line in inventory.txt consists of item name, quantity, and price per unit (e.g., Apple,100,0.50).
- The file inventory.txt is located in the same folder as the code file.

2. Inventory Management

Implement adding and removing of inventory items.

- When adding, name, quantity, and price must be provided.

- Additionally, extra attributes can be stored, e.g., type=fruit, size=M.

3. Main Menu

Implement a main menu from which all functions of the app are accessible.

- The first available function in the main menu should be a view of the current inventory.

- The functions developed in the following subtasks should be accessible through the main menu.

4. Data Persistence

Ensure that changes to the inventory are permanently saved.

- If changes have been made and the app is closed and reopened, the changes must not be lost.

- Additionally, the main menu should include a function that allows creating a backup of the current inventory at any
time, with a timestamp.

5. Update Item Details
Enable updating the prices of existing items.

6. Basic Input Validation

Implement a basic validation of user input as follows:
- Item quantities must be whole, positive numbers.

- Item prices must be positive floats.

7. Batch Management
Extend the data model so that each item can have multiple batches with different expiration dates.

- Each batch should have a unique ID and an expiration date.

8. Mark Defective Goods
Enable marking individual batches as defective.

9. Search (including Filters)

Enable searching inventory items by substring match on the name.
- Allow filtering search results by expiration date range.

10. Sales and Purchases

Enable recording of sales and purchase transactions.

Figure 14: User-Study Material - Taskset 2 Tasks.

29

B.4 Post-Task Questionnaires

Post Task Questionnaire 1

Please answer the following questions regarding the previous tasks

Please answer the following questions (1 = Strongly disagree, 7 = Strongly agree)

1 = Strongly
disagree 2 3 4 5 6 7 = Strongly agree
The tasks were clearly ~ ~ ~ ~ ~ ~ ~
understandable for me. L/ / Ny / (> A J
While using the tool, bugs — — — — — - —
oEcurred t.hat interfered Q (@) Q Q Q Q Q
with working on the tasks.
The support provided by
the tool was generally — —~ — —~ — — —~
helpful in completing the (N \J / (N N vy v
tasks
1 was able to quickly
recognize whether the — —~ —~ ~ ~ N N
answers from the tool were N J J v J J)
helpful to me.
| was able to trust that the — —~ —~ —~ ~ ~ ~~
tool’s answers were reliable / J J (v J / v
How often did you use the tool to compare the advantages and disadvantages of different solution alternatives?
Never 1-3 Time 4-6 Time 7-10 Times 11 Times or more
I N e I e
(v N v N N
Approximately how much time did you spend considering different solution approaches (e.g. different data models)?
ca. 10% or less ~20% ~30% ~40% ~50% ~60% ~70% or more
Y e Yy I I Yy)
v / o O/ O/ o O/

Figure 15: User-Study Material - Post-Task Questionnaire.

30

B.5 Exit Interview Questionnaire

Exit Interview

Compare OptionPilot and Vanilla:
What experiences did you have regarding processing speed and the quality of the results?

Enter your answer

Compare the two tasks:
How did you perceive the effort or cognitive load while working on each task? Were there

differences and if so, what reasons do you see for them?

Enter your answer

Please briefly evaluate the following individual aspects of OptionPilot.
Did it make your work easier compared to working with Vanilla? What could still be
improved or done differently?

Aspect 1: You were clearly pointed to potentially important decisions during the
implementation of a task.

Enter your answer

I would like this feature to also be available in the Al programming assistant | currently use: (1 =
Strongly disagree; 7 = Strongly agree)

7 = Fully

1 = Strongly
2 3 4 5 6 agree

disagree

O O O O O O O

Figure 16: User-Study Material - Exit Interview (1/3).

31

Aspect 2: You could confirm decisions through the LLM before implementation, instead of
possibly revising them afterwards.

Enter your answer

| would like this feature to also be available in the Al programming assistant | currently use: (1 =
Strongly disagree; 7 = Strongly agree)

1 = Strongly 7 = Fully
disagree agree

O O O O O O O

Aspect 3: You were shown the advantages and disadvantages of decisions without having to
ask for them.

Enter your answer

| would like this feature to also be available in the Al programming assistant | currently use: (1 =

Strongly disagree; 7 = Strongly agree)

1 = Strongly 7 = Fully
disagree agree

O O O O O O O

Aspect 4: Because decisions were made before code was generated, you had to analyze less
LLM-produced code.

Enter your answer

Figure 17: User-Study Material - Exit Interview (2/3).

32

| would like this feature to also be available in the Al programming assistant | currently use: (1 = Strongly disagree; 7 = Strongly agree)

1 = Strongly
disagree

2 3 4 5 6 7 = Fully agree

o) o L W L W

Aspect 5: You had the option to interact with the LLM via mouse clicks instead of speech.

Ihre Antwort eingeben

| would like this feature to also be available in the Al programming assistant | currently use: (1 = Strongly disagree; 7 = Strongly agree)

1 = Strongly

disagree 2 3 4 5 6 7 = Fully agree

g p— o L p— b o

To what extent did the tasks you worked on today reflect certain aspects of your work in programming?

Ihre Antwort eingeben

If you felt the tool was still underdeveloped, what would you potentially rate differently if it were more mature?

Ihre Antwort eingeben

Do you have any other ideas, opinions, or comments?

Ihre Antwort eingeben

Figure 18: User-Study Material - Exit Interview (3/3).

C Post-Task Questionnaire Individual Aspects Results

33

PTQ Q1: The tasks were clearly understandable to me.

5| mm Vanilla (Average: 6.36)
] B OptionPilot (Average: 6.18)
(%) 44
c
S
IS
3 31
4
Y=
5]
@ 21
o
£
=1
0

1 2 3 4 5 6 7
Response Value (1: Fully disagree; 7: Fully agree)

Figure 19: Results of Post-Task Questionnaire Question 1.

PTQ Q2: While using the tool, bugs occurred
that interfered with working on the tasks.

" 37 B Vanilla (Average: 1.73)
g al B OptionPilot (Average: 2.91)
5
a
3
o 37
-
©
T 2]
o
£.]
= l
ol . -
1 2 3 4 5 6 7

Response Value (1: Fully disagree; 7: Fully agree)

Figure 20: Results of Post-Task Questionnaire Question 2.

PTQ Q3: The support provided by the tool was
generally helpful in completing the tasks.

" 61 mmm Vanilla (Average: 6.10)
8 5] mmm OptionPilot (Average: 6.27)
5
o4
9]
4
5 37
—
329
£
=1
0

1 2 3 4 5 6 7
Response Value (1: Fully disagree; 7: Fully agree)

Figure 21: Results of Post-Task Questionnaire Question 3.

34

PTQ Q4: | was able to quickly recognize whether the answers
from the tool were helpful to me.

44

Il Vanilla (Average: 5.00)
I OptionPilot (Average: 5.45)

Number of Responses

1 2 3 4 5 6 7
Response Value (1: Fully disagree; 7: Fully agree)

Figure 22: Results of Post-Task Questionnaire Question 4.

PTQ Q5: | was able to trust that the tool's answers
were reliable.

| mmm Vanilla (Average: 4.70)
mmm OptionPilot (Average: 4.73)

Number of Responses

1 2 3 4 5 6 7
Response Value (1: Fully disagree; 7: Fully agree)

Figure 23: Results of Post-Task Questionnaire Question 5.

PTQ Q6: How often did you use the tool to compare the advantages and
disadvantages of different solution alternatives?

10

mm Vanilla
I OptionPilot

Number of Responses
o

Response Value

Figure 24: Results of Post-Task Questionnaire Question 6.

PTQ Q7: Approximately how much time did you spend considering
different solution approaches (e.g. different data models)?

mmm Vanilla (Average: 3.6%)
I OptionPilot (Average: 14.5%)

I o ©

Number of Responses

N)

oo oo

4 4
Response Value

Figure 25: Results of Post-Task Questionnaire Question 7.

35

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 LLMs as Developer Tools
	2.2 Shifting Perspectives on LLMs for Developer Assistance
	2.3 Identified Shortcomings in Previous Approaches

	3 Proof-of-Concept Implementation
	3.1 Prototype User Workflow Example
	3.2 OptionPilot Implementation Overview
	3.3 Addressing Shortcomings through Decision Points

	4 User Study Design
	4.1 Session Flow and Data Collection
	4.1.1 Programming Tasks
	4.1.2 Post-Task Questionnaire and Exit Interview

	4.2 Task Design
	4.3 Prototype Adaptations
	4.4 Participant Selection and Sample Composition
	4.5 Data Analysis

	5 Findings
	5.1 Overview and Context of Collected Data
	5.1.1 Prototype Behavior and Reliability
	5.1.2 Session Dynamics and Researcher Interventions
	5.1.3 Factors shaping Participant Performance and Responses
	5.1.4 Comparability to Real-World Scenarios

	5.2 Participants Usage and Evaluation of OptionPilot
	5.2.1 Decision Point Interaction Patterns
	5.2.2 Overall Opinions on Decision Points

	5.3 Participants Assessment of Individual Aspects of Decision Points
	5.3.1 Explicitly Surfacing Decisions
	5.3.2 Preemptive Decision-Making
	5.3.3 Consistently Highlighting Implications
	5.3.4 Delayed Necessity to Read Code
	5.3.5 Interactivity

	6 Discussion
	6.1 Summary of Findings
	6.1.1 Prototype Performance and Participant Behavior
	6.1.2 Participants' Assessment

	6.2 Interpretation and Implications
	6.2.1 Premature Outputs (RQ1)
	6.2.2 Obscured Implementation Paths (RQ2)
	6.2.3 High Cognitive Load (RQ3)

	6.3 Limitations and Future Work
	6.3.1 Limitations from Methodology
	6.3.2 Refining the concept of Decision Points
	6.3.3 Applications Beyond Coding

	7 Conclusion
	References
	Appendix
	A Implementation Documentation
	A.1 OptionPilot System Prompt
	A.2 OptionPilot System Prompt JSON Response Schema
	A.3 OptionPilot Option Confirmation Prompts

	B User Study Material
	B.1 Demographic Questionnaire
	B.2 Task Set 1
	B.3 Task Set 2
	B.4 Post-Task Questionnaires
	B.5 Exit Interview Questionnaire

	C Post-Task Questionnaire Individual Aspects Results

