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Figure 1: The core functionality of the prototype.

Abstract
Large Language Models (LLMs) are increasingly integrated into

software development workflows, yet their use for code generation

continues to face recurring challenges such as premature outputs

and obscured implementation paths. This work introduces the con-

cept of decision points, a mechanism that inserts a pause between

a user’s request and code generation in LLM coding assistants

in case ambiguities remain or multiple potential implementation

paths exist. Here, instead of producing code immediately, key im-

plementation choices are surfaced to the user through interactive

UI elements that highlight decisions along with applicable options

for the user to select, allowing users to clarify their intent and

steer outputs. We implemented OptionPilot as a proof-of-concept
prototype to evaluate the proposed concept in a mixed-methods,

qualitative first lab study with 14 participants. Findings indicate

that decision points can enhance users’ sense of control and reduce

frustration from premature outputs or misaligned code generation.

Participants appreciated decision points for making key decisions

and trade-offs explicit, though their effectiveness depended on the

perceived contextual relevance of presented decisions. We argue

that well-designed interactive mechanisms, as illustrated by deci-

sion points, have the potential to enhance the experience of using

LLM coding assistants and to facilitate more effective forms of

human-AI collaboration in other fields.

1 Introduction
Large Language Models (LLMs) have demonstrated significant po-

tential in supporting software engineering tasks, beginningwith the

ability to generate code from natural language instructions [28, 16,

25]. Additionally, LLMs are proving valuable for a range of adjacent

tasks such as generating documentation, and their capabilities are

increasingly being integrated directly into integrated development

environments (IDEs), thereby unlocking new workflows and op-

portunities for developer assistance [11, 24, 13]. Ongoing research

is investigating these developments from various perspectives, ex-

amining not only the code generation capabilities of LLMs but also

how their integration into development environments could re-

shape existing workflows [1, 28, 35]. Research finds, for example,

that efficient interactions and clear presentation of outputs are key

factors shaping how valuable developers perceive LLM assistance

to be [27].

Although LLM-assisted programming is widely regarded as hold-

ing significant potential, research consistently highlights recurring

shortcomings that limit its effectiveness, stemming both from the

capabilities of the underlying models and their integration into

LLM programming assistants commonly used in IDEs.

For example, LLMs in general frequently respond to underspeci-

fied requests with fully formed solutions. They do this by making
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assumptions about the user’s intent rather than prompting for clar-

ification, and generally show shortcomings in capturing user intent

[14, 6]. This tendency can lead to premature outputs, primarily code

that might be syntactically correct yet misaligned with the devel-

opers’ actual intentions, potentially causing unnecessary rework

and frustration [15, 31]. This behavior, in part, forces developers

to carefully scrutinize long blocks of generated code to determine

whether incorrect assumptions may have been introduced, thereby

contributing to cognitive overload [3, 34, 1]. Long, insufficiently

structured outputs make it difficult for developers to identify criti-

cal information or verify whether the implementation aligns with

the original intent. Similarly, important implementation choices

are often not highlighted, leaving alternative implementation paths

obscured [15, 34]. This lack of transparency both increases the cog-

nitive effort required to review outputs and leads developers to

experiencing a loss of control over the implementation process [3].

We introduce the concept of decision points as a mechanism

to address these limitations. Decision points follow the notion of

augmentation instead of automation to address the shortcomings

of premature outputs, obscured implementation paths, and high

cognitive load.

Differing from prevailing approaches, the concept intends to

insert a pause between request and an LLM’s output whenever

ambiguities remain, instead surfacing these ambiguities or poten-

tial implementation paths to the user in an interactive UI display-

ing multiple options, thereby allowing the user to clarify intent

or steer the outcome. Instead of producing a solution based on

low-confidence assumptions, for example, when multiple imple-

mentation paths are valid, the system prompt is designed to identify

areas where information is missing and prompt the user for input.

To examine the potential for addressing the identified shortcom-

ings of LLM-based programming assistants throughDecision Points,

we developed a prototype called OptionPilot. Figure 1 illustrates an
example interaction in which (1.) a user enters a prompt contain-

ing ambiguities, and (2.) the underlying LLM generates a decision

point that allows the user to choose between different options, each

accompanied by explanations of potential trade-offs. After mak-

ing their decisions, the user clicks Produce Code, which triggers

the LLM to implement the solution according to the user-specified

choices (3.).

The concept aims to demonstrate a subtle design shift from

immediate generation to augmented interaction, thereby enhancing

the developer experience by reducing the need to correct misaligned

code or review lengthy outputs for incorrect assumptions.

Building on the identified shortcomings of current LLM-based

coding assistants, namely premature code outputs, obscured imple-

mentation paths, and high cognitive load, this work investigates

whether the concept termed decision points has potential to ad-

dress these shortcomings through a collaborative approach. The

core assumption is that by surfacing key decisions before code is

generated, users can consciously steer the outcome, thereby reduc-

ing the mental effort required to interpret or correct misaligned

outputs afterward. To investigate this, we formulated the following

research questions:

RQ1 To what extent do decision points or specific aspects of them,

demonstrate potential to mitigate premature outputs in LLM-

assisted programming?

This question addresses the tendency of current tools to generate

code prematurely, for instance, as a result of incomplete or ambigu-

ous information.

RQ2 To what extent do decision points or specific aspects of them,

demonstrate potential to address obscured implementation

paths in LLM-assisted programming?

This question examines whether and how decision points can be

effective at making different implementation paths, as well as their

implications and trade-offs explicit to users.

RQ3 By addressing these aspects, to what extent do decision points

demonstrate potential to reduce developers’ cognitive load

during LLM-assisted programming?

This question connects the two preceding aspects, evaluatingwhether,

by addressing these issues or through additional mechanisms, de-

cision points hold potential to reduce developers’ cognitive load

during LLM-assisted programming.

To investigate the potential of the proposed interaction concept,

we first implemented a proof-of-concept prototype. After initial

refinement, we conducted a mixed-methods, qualitative first user

study to collect initial insights from user experiences. In moderated

lab sessions, we asked professional developers and adjacent job roles

of varying experience levels to work on two sets of programming

tasks, with decision points enabled for one of the two sets. Data

was collected through think-aloud protocols, screen recordings,

questionnaires, and semi-structured exit interviews. This approach

enabled us to capture data from multiple perspectives and obtain

initial insights into the potential of decision points.

Our findings indicate that the concept of decision points has the

potential to improve the experience of using LLM-based coding

assistants. Participants in the user study appreciated being able

to steer outputs proactively and reported that the approach re-

duced frustration with premature or misaligned code generation.

At the same time, the results highlight that the effectiveness of

decision points strongly depends on their contextual relevance and

timing within the interaction. Decision points perceived as irrele-

vant increase mental load rather than reducing it. The clear visual

highlighting of decisions and their implications, as well as the in-

teractivity of decision points, were seen as beneficial and could be

effective not only for enhancing LLM-based coding assistants but

also for improving the experience of using LLM chats in general.

Based on these insights, we propose several recommendations for

future adaptations, including default decision options and collapsi-

ble sections with additional information, such as example code for

different options.

This work makes three contributions. We introduce decision

points as a concept for LLM-based coding assistants to address the

shortcomings as discussed above.We present OptionPilot as a proof-

of-concept prototype that implements decision points through
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JSON-structured LLM outputs and an interactive UI layer. Finally,

we report findings from a mixed-methods, qualitative first user

study comparing developers’ usage of OptionPilot to a baseline con-

dition. The study yielded insightful observations about the concept

and directions for future adaptations. Through these findings, we

contribute to the developing notion of augmentation rather than

automation in human-LLM interaction, introducing concepts that

may extend beyond programming assistants.

In this work, We first situate this study within the broader con-

text of research on LLM-based developer assistance and outline

the identified shortcomings motivating this study. In Section 3, we

detail the implementation of the proof-of-concept prototype, while

Section 4 describes the methodological design of the user study. In

Section 5, we present the user study findings with their implica-

tions and limitations discussed in Section 6. Finally, in Section 7

we conclude by summarizing the main outcomes and reflecting on

potential future research directions.

2 Background and Related Work
Applying LLMs to code generation and software engineering, in

general, is a rapidly evolving and highly promising area of research.

The capabilities of LLMs are advancing continuously and are ac-

companied by new tools and methods designed to leverage these

emerging opportunities [7].

In the following, we provide a brief overview of different research

directions in the field. We first describe how LLMs are used as

developer tools, ranging from code completion to broader forms of

assistance within IDEs. We then highlight an ongoing shift in focus

from full automation to human-centered augmentation, illustrated

with examples from prior research.

Finally, we summarize recurring shortcomings reported across

studies and approaches, namely premature outputs, obscured imple-

mentation paths, and high cognitive load. This review is intention-

ally selective rather than exhaustive, with the goal of presenting an

overview of the research landscape and deriving open potentials to

motivate this work.

2.1 LLMs as Developer Tools
LLMs have proven to be valuable tools across a broad range of

domains involving natural language, and they continue to grow in

capability through advancements such as larger parameter counts

and techniques like chain-of-thought reasoning [30, 7, 33]. Software

engineering has emerged as a promising domain for the application

of LLMs, as they demonstrate potential in a variety of related tasks,

beginning with code generation [28].

Initially, research in this area focused on automatic code gener-

ation and program synthesis, ranging from generating code from

formal specifications to producing code from natural language in-

structions [16, 25]. This capability can be applied in practice to

support developers, for example, by providing code completion fea-

tures in IDEs, where the assistant continuously makes suggestions

to complete lines of code while the developer is typing [1].

Increasingly, LLMs are being applied more broadly across soft-

ware engineering activities, moving beyond code generation and

related tasks, such as translating code between languages, to also

assisting in activities like code explanation and documentation

generation [11, 22, 23, 28].

Although LLMs are being used for many of these tasks through

general-purpose chat interfaces such asChatGPT 1
, there are increas-

ing efforts to integrate these capabilities more closely into software

engineering workflows. Popular IDEs such as Visual Studio Code,

as well as newer tools like Cursor2, now increasingly embed LLM-

based chat interfaces and other LLM-based features directly into

development environments. These integrations assist developers

by embedding LLMs more deeply into their workflows, allowing

them, for instance, to continuously access contextual information

from their active projects [13, 11, 24].

These multi-purpose LLM coding assistants augment developers’

work in a variety of novel ways and are increasingly being adopted

by developers [24, 15]. In a typical workflowwith an IDE-integrated

chat interface, the starting point is comparable to working with a

standard LLM chat interface such as ChatGPT. For this, the appro-

priate context must be established, developers must write prompts

and review generated outputs, often iteratively, continuously as-

sessing which parts of the outputs to integrate into their work

[3].

2.2 Shifting Perspectives on LLMs for Developer
Assistance

As LLM-based tools become increasingly capable and widely used,

research has begun looking beyond their performance in code gen-

eration alone towards an understanding of how these tools fit into

developer workflows. Newer studies explore how LLMs can be de-

ployed to assist in, or even redefine, developer work, opening up

new possibilities and challenges.

The predominant vision of the future of LLM-assisted program-

ming assumes humans taking the role of stating and potentially

refining an end goal, after which an LLM carries out the implemen-

tation, producing results that are then assessed by a human [31].

Research in this direction focuses on assessing and improving code

generation capabilities directly or through the development of new

techniques, such as integrating automated tests for generated code

[6, 32].

Other studies approach the assessment of the usefulness of cod-

ing assistants in a more holistic way, for example by investigating

which specific tasks make up the activity of software engineering

and how tools could assist in these areas. One study investigates

the usefulness of LLM programming assistants for tasks in four

groups of activity, namely: (1.) implementing new features, (2.)

writing tests, (3.) bug triaging and (4.) refactoring and writing natu-

ral language artifacts [24]. Similarly, a related study examines the

roles LLMs can take in assisting in seven categories of activities

in software engineering such as code generation, code translation,

vulnerability detection, or question and answer interactions [33].

Studies falling into the mentioned categories tend to assess

the performance of assistants by benchmarking against existing

datasets for example sets of coding problems or, by investigating

specific capabilities for classes of problems by combining evaluation

metrics [11].

1
https://chatgpt.com/

2
https://cursor.com/
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Following the early focus on benchmarking and technical perfor-

mance, recent research has increasingly turned toward examining

how LLM programming assistants are used in real-world practice.

An example of this investigates how programmers interact with the

code generation feature of GitHub Copilot and finds that tasks for

which developers seek LLM assistance there can be divided into two

categories: exploration mode as in exploring potential solutions for

a problem, and acceleration mode as in implementing an envisioned

solution [1]. In another example, researchers examined the usage

of watsonx, the in-house coding assistant from IBM. Among other

results, findings suggest that code understanding in general was a

more common use case than actual code generation [28].

Investigating what tasks these tools are utilized for is an example

of how research is increasingly exploring the field of LLM assistance

for software development from a variety of angles, attempting to

understand how developers will leverage and adapt to these novel

tools and possibilities in the future. Findings that offer valuable

insights in this regard are, for example, the following. Within the

output of LLM assistants, accompanying information such as expla-

nations can be equally relevant to the experience as the code output

itself [7]. Similarly, findings suggest that an efficient interaction

design and clear presentation of outputs are key factors for the

perceived quality of a developers’ experience with LLM tools, while

a narrow focus on technical performance can obscure their broader

potential [27].

Insights like these are prompting broader questions that go be-

yond task-specific performance toward understanding the evolving

role of LLM tools within developer workflows. Together with the

growing adoption of LLM programming assistants, this raises ques-

tions about how programming workflows will evolve and how

new capabilities may redefine established assumptions, roles, and

processes [1, 23, 27].

An example of this shift in perspective, from evaluating the cor-

rectness of generated code to envisioning new forms of collabora-

tion, is the growing notion of augmentation rather than automation.

For instance, data from the Anthropic Economic Index published by

Anthropic show that 57% of prompts on Claude.ai3, the company’s

general-purpose LLM chat interface, lean toward collaboration in-

stead of automation (43%) [10]. This is reflected in other findings

that show users of artificial intelligence (AI) systems favor retaining

the final decision over an interaction’s output, thereby maintain-

ing a sense of control [9]. This marks a shift away from the prior

emphasis on increasing automation, which has long been the focus

of many AI systems [20].

These insights relate closely to a recurring limitation observed in

LLM programming assistants and LLMsmore broadly, the challenge

of accurately capturing user intent. Current approaches regularly

fall short in this regard, for instance, by failing to guide users to clar-

ify their intent when a request is ambiguous [6, 11]. LLMs generally

show a tendency to respond to requests with fully formed solutions,

even when crucial information is missing, and do so by making po-

tentially incorrect assumptions [14]. When presented with a coding

task, LLMs show a tendency to immediately output code upon the

first user request. This behavior can lead to code outputs that are,

for example syntactically correct but do not support the intended

3
https://claude.ai/

functionality [11]. This tendency to generate code immediately can

have a range of negative consequences, for instance, forcing users

to skim lengthy code suggestions to determine their usefulness,

which can lead to cognitive overload. One way to mitigate this issue

is to design tools that refrain from low-confidence assumptions,

meaning the tool should first determine whether sufficient context

is available before making a suggestion [1].

This can be seen as an example of how programming might

evolve, with human-AI interaction becoming an important part.

By recognizing both the capabilities of LLMs and their limitations

in capturing user intent, the focus of code generation can shift

from full automation toward more augmented approaches. This

shift illustrates how programming is likely to evolve, with human-

AI interaction becoming an increasingly central element of the

development process.

Rather than focusing on how current tools are used, an alter-

native perspective is to explore potential future possibilities while

drawing key lessons from prior approaches. Research in this di-

rection investigates new forms of collaboration between humans

and LLMs, moving beyond one-shot code generation. One study,

for example, starts from the idea that programming can be under-

stood as a design activity, as in the process of creating software

not just being a matter of translating a set of fixed requirements

into code, but as a process of exploring both the given problem and

possible solutions iteratively in order to find a suitable solution.

The researchers implemented an IDE prototype designed to sup-

port iterative exploration of multiple implementation options and

their associated trade-offs, while tracking decisions and rationales

outside the chat history. Although their approach, which featured

three separate, coordinated agents, enabled broader exploration of

alternatives, it also introduced additional cognitive load, as users

felt overwhelmed by managing multiple panels and functionalities

within the IDE [31].

A different study examines an approach where, in a specific use

case, a UI consisting of sliders, drop-downs, or other elements is

placed between the prompt and the code output, allowing users to

make certain adjustments to the output. This scaffolding is designed

to improve code understandability and reduce prompting effort.

They report that their approach reduced prompting effort and en-

couraged exploration, but insufficient explanations and unwanted

suggestions slowed users down [4].

Another illustrative example investigates a simpler idea which

simultaneously follows the theme of reassessing the use and role of

LLMs in programming based on what is possible rather than what is

currently done. They implemented an IDE plugin that enables users

to generate explanations for a specific code snippet, with a single

mouse click after highlighting the selected code snippet, while

taking into account the context in the given project. They find that

users appreciated having the plugin, viewing it as an easy-to-use

add-on to Copilot [17]. This study exemplifies how current systems

can be improved with relatively simple solutions that utilize LLMs

in imaginative ways.

These studies highlight the potential of novel solutions while

surfacing potential pitfalls.
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2.3 Identified Shortcomings in Previous
Approaches

To provide context for the motivation of this work, we highlight

three related issues with current approaches in LLM-assisted pro-

gramming, as identified by research, beginning with an expansion

of the previously outlined issue of premature outputs. Premature

outputs are in part causing obscured implementation paths and

both issues contribute to cognitive overload.

Premature Outputs. While premature outputs are a documented

challenge for LLMs in general, their tendency to produce final

artifacts upon a user request can be a particular issue for LLM

programming assistants.

When conditions are not fully specified, an LLM may gener-

ate code that fulfills the explicitly stated requirements but fails to

capture the underlying intent of the developer [15, 14]. This lim-

itation is amplified by the fact that requirements are frequently

underspecified in early prompts and tend to in part only evolve

through subsequent design decisions or trade-offs made during the

implementation process [31]. Hallucinations, a well-documented

issue for LLMs in general, can additionally contribute to this is-

sue. Instead of surfacing a lack of information to the user, LLMs

occasionally fabricate pieces of missing information, which is at

times hard to detect for users [7]. These issues are exacerbated by

LLMs’ difficulty in revising prior misconceptions and struggle to do

so even when incorrect assumptions have been corrected further

along in an interaction [14].

Premature outputs contribute to developer frustration as devel-

opers must invest effort in correcting invalid results [15, 14]. Given

the persistence of premature outputs, users must routinely review

generated code to identify potential inaccuracies such as misaligned

assumptions, frequently working under the assumption that unin-

tended and potentially unwanted elements are being implemented

[34, 1]. As an alternative to fully formed but premature outputs,

research shows that users often prefer receiving an initial starting

point that scaffolds a solution, enabling them to refine and extend

the implementation according to their own intentions [31, 28, 35].

Obscured Implementation Paths. Obscured implementation paths

occur when an LLM proceeds with a specific solution without

making users aware of alternative approaches, which may carry

entirely different, and potentially more suitable, implications for the

future of the codebase. The code generatedmight be fully functional,

nevertheless critical choices are regularly not highlighted in LLM

outputs [25]. Obscured implementation paths are a related issue

to premature outputs and arise at times as a consequence of them.

With obscured implementation paths, the issue primarily lies in

a limited ability of the user to steer the output and influence the

broader project trajectory, which leads to users experiencing a loss

of control [15, 34]. Obscured implementation paths can require

users to engage in additional prompting to uncover potentially

more suitable or effective approaches [3].

A number of studies emphasize the need for LLM programming

assistants to incorporate intuitive mechanisms that enable users to

steer the output and explore multiple implementation alternatives

[34, 15]. Current systems in part experiment with offering users

more than one suggestion at a time, for instance, by generating

multiple code snippets and allowing users to choose among them

[1]. This remains the exception rather than the norm, even when

such features are supported, factors that might influence the code in

future developments are not explicitly highlighted and assumptions

are hidden in longer outputs, requiring effort to detect them [31].

In addition to a loss of control and potential long term negative

effects on the codebase, not involving users in decision making can

introduce another drawback. The paper Programming as Theory
Building (1985) argues that the output of the activity of program-

ming is not only the resulting code but also mental constructs

developed by the developer during the work. When developers are

not aware of decisions being made in implementing requirements

into code, for example by making decisions, they do not form a

theory or understanding of the code [18, 21].

Cognitive Overload. Cognitive load can be defined as “The load

imposed on working memory by information being presented.” [19].

Cognitive load can be divided into intrinsic cognitive load, meaning

load stemming from the task itself, extraneous load, meaning load

stemming from how the task is presented, unrelated to the task

itself, and germane cognitive load, as in productive effort used to

process information and understand the task [26] [19].

Both issues outlined previously contribute to cognitive over-

load reported by users of LLM programming assistants. Premature

outputs, as well as the persistent potential for their occurrence,

require users to continually account for these risks. Obscured im-

plementation paths similarly increase extraneous cognitive load

by necessitating users to continuously question the LLM’s outputs.

When outputs fail to meet the user’s intentions or contain bugs,

developers may spend excessive time modifying generated code

[15]. At the same time, partly in anticipation of such issues, users

spend cognitive effort upfront by writing long prompts and care-

fully setting context to minimize the likelihood of unwanted results,

leading to frustration when outputs do not meet expectations [13].

An additional factor identified in the literature as contributing

to cognitive overload is excessive amounts of information being

presented by LLM outputs at once [3, 34, 1, 31]. Assistants fre-

quently produce extended code segments that obscure essential

details, making it difficult for users to identify and comprehend

key information. As a result, developers may disregard generated

outputs entirely when they cannot easily understand them [15, 34].

This issue becomes particularly apparent when the generated code

lacks sufficient accompanying explanations [7]. Approaches that

allow users to scale the amount of information displayed according

to their preferences and needs for explanation may help address

this [3].

3 Proof-of-Concept Implementation
The prototype was developed from an idea to address the short-

comings outlined in Section 2.3. The concept is based on novel UI

elements hereafter referred to as decision points which would ulti-

mately be integrated into LLM coding assistants. Decision points

in essence provide users with clickable concise options, instead

of text-only output when conditions are met. Decision points are

intended to augment the interaction with assistants through surfac-

ing decisions or missing information to the user and allowing them
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Figure 2: Empty Chat Interface.

to conveniently make decisions while displaying an appropriate

amount of accompanying information.

The following describes how the prototype for evaluating deci-

sion points was developed and what enables its functionality. First,

to illustrate a potential interaction with decision points, we outline

an example of a user experience, followed by an explanation of

how the prototype was implemented. We provide a description of

the most relevant aspects that enable decision points followed by

some theory on how decision points are intended to address the

identified shortcomings.

3.1 Prototype User Workflow Example
The prototype resulting from the design process named OptionPilot

is intended to support the evaluation of the idea in a user study,

and is therefore reduced to the essential functionality. Nevertheless,

the prototype successfully provides an initial understanding of

how these elements could ultimately work, as envisioned, when

integrated into programming assistants.

The general interface is a typical LLM chat, see Figure 2. Users

can interact with the underlying LLM as with any other.

Unlike other tools, OptionPilot supports the following additional

functionality. Instead of plain text answers, OptionPilot will regu-

larly, upon a user’s request, display one of two types of decision

points. A Single Decision Point, see Figure 3 and a Multi Decision
Point, see Figure 1. As interactive UI elements, decision points allow

users to make decisions highlighted for them by clicking on these

elements. In the given example Figure 3, a user requests the imple-

mentation of a start menu for a CLI game. Through the displayed

decision point, the user can choose between two ways to implement

this.

In the background, this is enabled through a system prompt that

instructs an underlying LLM to output JSON objects that are then

rendered in the displayed UI. As part of the system prompt, the

LLM is instructed to assess user request for a number of factors,

such as ambiguous requests or path decisions.

Decision points are generally interactive, in single decision points,

options can be expanded and collapsed to reveal additional infor-

mation and users can select an option they want to proceed with by

clicking a button displayed for each option. Being able to respond

to questions asked by assistants by clicking on them is a simple fea-

ture, but curiously absent in existing assistants. For single decision

points, each option has a Generate Code button displayed next to

it, which will trigger a prompt that instructs the LLM to implement

the chosen option into code. Additionally, a Proceed button will

trigger instructions to continue the conversation. This option leaves

the decision about the next suitable step in the conversation, which

could be another decision point, to the LLM.

In multi decision points, instead of one single decision with two

options being displayed, two to four decisions with two options

each are being displayed simultaneously, see Figure 4. The user

may choose an option for each decision, with chosen options being

highlighted by the blue border for each decision. Recommended

options selected by the LLM are preselected when the decision

point is first displayed. Similar to single decision points, users can

click Produce Code which triggers instructions to implement code

according to selected choices. Users can generally ignore decision

points and choose to continue the interaction with other instruc-

tions. For both types of decision points, users have the option to

include additional instructions for proceeding with decisions in the

text input field.

3.2 OptionPilot Implementation Overview
A lightweight Flask

4
webapp was implemented to ensure basic pre-

requisites like session management. HTMX
5
was used to enable

some of the frontend interactivity. OptionPilot uses the OpenAI

GPT-4.1 API which proved capable enough to handle the complex-

ities of the system prompt described below, and was effective at

code generation. Experiments with less performant models led to a

considerable decrease in the user experience through less relevant

decisions and increased occurrences of answers with invalid JSON.

System Prompt. The foundation of OptionPilot’s functionality

is an iteratively designed system prompt that details the neces-

sary instructions to achieve the intended behavior of the LLM. See

Appendix A for the full prompt. The system prompt contains a de-

scription of the role and setting that the assistant is working in, as

well as relatively detailed instructions for enabling decision points.

Crucially, instructions are given for the LLM to only respond with

a specific JSON schema that contains objects that all parts of an

answer must be formatted in, as well as descriptions for how to use

them. See Section A.2 for the full JSON format. Instructions also

detail how each answer the LLM provides has to be constructed

from the following objects: (1.) text, (2) code, (3.) single decision

points and (4.) multi decision points.

The key to decision points working as intended is instructions

about when and how to include a decision point in an answer.

Instructions here include a context section about why to use them

such as to avoid low confidence assumptions, as well as guidelines

for when to use them specifically, for example occasions such as

ambiguous request, or when multiple implementation paths with

significant future tradeoffs are available.

The system prompt outlines which type of decision point should

be used in what scenario. Single decision points, which surface one

decision at a time to the user, are intended for impactful decisions

with potentially broad influences on the future of the code. Single

decision points provide additional details about the implications

of each option. Multi decision points allow users to make multiple,

less far-reaching decisions at once and provide fewer details for

each option. While enabling two types of decision points could add

complexity, it could also prove valuable for different scenarios.

4
https://flask.palletsprojects.com/en/stable/

5
https://htmx.org/
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Figure 3: Single decision point with an expanded toggle.

Constructing the system prompt involved significant design de-

cisions and tradeoffs. Questions arose about how much context and

guidelines to include and how much freedom to allow the LLM in

order to strike a balance between narrow instructions, which might

be less flexible in certain situations depending on user working

styles or coding tasks, and unconstrained instructions, which could

fail to achieve the desired behavior.

Interactivity. A central feature of decision points is their attempt

at introducing interactivity into the interactions with LLM coding

assistants. Although prompting techniques could in theory cover

substantial parts of the functionality that decision points provide,

the user experience could be unsatisfying. For example, when a

user wishes for more information about a decision, with a single

decision point this information is one click away by expanding the
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Figure 4: Multi decision point showcasing multiple decisions simultaneously.

toggle of an option. Prompting for this would reintroduce effort for

the user and would mean the answer being displayed below the

prior answers, leading to cluttered information.

The prototype enables additional interactivity through render-

ing each type of object of the JSON schema in a predefined way.

Displayed decision points include buttons, which when selected

by the user, trigger a prebuilt prompt to be sent, which includes

all necessary information to be sent depending on the button. For

example: “The user has instructed to generate code for the follow-

ing selected option: {selected_option}, with additional instructions:

{additional_instructions_from_user}”. When typical existing chat-

bots and coding assistants ask the user a question, for example at
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the end of an answer “Should I give you more information about

that?”, users have to manually type their answer. This purely text

based interaction approach is at times inefficient and leaves room

for improvement.

We additionally implemented preloading for the content of the

buttons displayed for single decision points. When a user clicked

the button on a single decision point option, the corresponding

message would appear instantly in the chat window.

3.3 Addressing Shortcomings through Decision
Points

Decision points attempt to address the shortcomings identified in

Section 2.3 from multiple angles.

Instead of generating fully formed solutions upon the first re-

quest, OptionPilot presents choices to the user, allowing them to

pick between multiple implementation paths interactively. These

decision points are intended to appear at points deemed relevant,

for example, to allow users to clarify their intent. Through this

OptionPilot attempts to return control to the users and reduce

cognitive overload stemming from a range of factors.

Premature Outputs. Through decision points, OptionPilot inten-

tionally inserts a pause between an input and code output whenever

user intent or context is unclear, avoiding hallucinations to fill in

gaps. Instead of inferring a solution with incomplete information,

the system prompt is supposed to identify areas where clarification

or user input is needed, prompting users to clarify their goals or se-

lect between implementation alternatives before code is produced.

By surfacing possible implementation paths, including their im-

plications, and letting users conveniently pick between them, the

issue of developers experiencing a loss of control when using LLM

coding assistants could be addressed. By aligning code generation

more closely with actual user intent, OptionPilot could improve

code quality and reduce the need for corrections stemming from

premature outputs.

Obscuring Alternative Implementation Paths. OptionPilot attempts

to address the issue of obscured implementation paths by highlight-

ing critical decisions and their trade-offs explicitly, providing users

with an overview of possible decisions and implications of different

options. This directs the user’s intent toward cases where their

input can prevent unnecessary rework that would otherwise result

from the model making decisions based on incorrectly inferred

information.

To achieve this, the system prompt instructs the LLM to detect

points where multiple implementation paths with meaningfully

different implications exist and surface these paths to the user’s

attention through decision points. Determining what constitutes

a significant enough decision and when intent is too ambiguous

requires contextual awareness and a certain degree of model capa-

bility as well as fine-tuning of the system prompt.

The underlying assumption is that the two types of decision

points may approach this issue in different ways. Single decision

points aim to prevent significant wrong turns in high-impact deci-

sions, whereas multi decision points allow users to make several

smaller but still relevant choices quickly.

Cognitive Overload. By addressing the previously outlined issues
and through additional mechanisms, decision points could help

address high cognitive load in LLM-assisted developer work.

Decision points attempt to reduce and structure the amount of

information that users need to process at once therefore. Within

OptionPilot, relevant decisions are not hidden in an answer, but

instead highlighted explicitly by the UI. Benefits and drawbacks of

different choices are explicitly and concisely outlined with positive

and negative implications highlighted in green or red for them to be

immediately identifiable therefore reducing extraneous cognitive

load. Through this, implications of the decision are made readily

available without additional prompting. In single decision points,

options are collapsible and are by default collapsed so as not to

overwhelm users with information, but to conveniently provide

additional context for an option, when the user wants it.

These aspects of decision points illustrate how they could pro-

vide advantages that could not be achieved with prompting alone.

Prompts could address part of the identified shortcomings, but the

UI layer could add significant additional benefits such as interactiv-

ity and improved highlighting of essential information.

4 User Study Design
In order to investigate whether decision points could mitigate the

identified shortcomings, and to gain initial insights about which

mechanisms specifically could be effective, we designed a mixed-

methods, qualitative first lab study with a sample of 14 participants.

In a moderated lab session, we asked participants to work on two

sets of programming tasks with OptionPilot while decision points

were activated for one of the sets in order to draw lessons from a

direct comparison. User sessions consisted of a demographic ques-

tionnaire, two coding tasks, each followed by a short post-task

questionnaire and a semi structured exit interview. The approach

was chosen to enable an initial exploratory evaluation of the con-

cept, which could offer insights into both hypothesized effects about

addressing shortcomings, and simultaneously surface unanticipated

phenomena. The study design was reviewed and approved by the

ethics committee of the host institution under number 20250624.

The following details the user’s session flow and data collection

methods, the rationale behind the chosen programming tasks, adap-

tations made to the prototype for the study, participant selection

and sample composition, and finally, data analysis methods.

4.1 Session Flow and Data Collection
Given the novelty of the concept and the exploratory nature of the

study, we adopted a broad data collection strategy. The following

outlines the structure of the study sessions and details the methods

used to capture the intended multifaceted dataset. See Figure 5 for

an illustration of the lab sessions phases.

Sessions were conducted through a remote video call and partic-

ipants were informed about data handling procedures beforehand.

First, participants received a brief introduction to the study back-

ground and procedure, then the coding environment was set up on

the participants’ computer. Subsequently, participants completed a

short demographic questionnaire capturing contextual information

such as their job role, and level of experience with Python.
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Figure 5: Overview of the user study procedure, illustrating the sequence of questionnaires and tasks.

4.1.1 Programming Tasks. Following the demographic question-

naire, participants were asked to work on the first of two program-

ming task sets. The rationale for designing the tasks is detailed

further in Section 4.2. Coding sessions began with an explanation

of the basic functionalities of OptionPilot, for example the Clear
History button, which cleared the chat history. As the prototype

is fairly minimalist and focused on the novel features, detailed in-

structions were mostly provided when issues or misunderstandings

arose during the sessions. Participants could use any development

environment of their choice in order to reduce unnecessary hur-

dles and keep coding environments close to participants’ usual

workflows. Because varying but generally lower levels of Python

experience were anticipated, potential differences introduced by

using different environments were accepted.

In the study, participants used two versions of the prototype:

Option with decision points enabled and Vanilla where they were

disabled. Both the task set order and the starting mode were ran-

domized across participants in order to isolate the effect of the

mode differences and control for confounding biases caused by

learning effects or differences in the task sets. Before working on

the Option mode task set, participants received a brief introduction

to the functionality of decision points. Participants were given one

minute to skim the task set initially and subsequently 20 minutes

for coding.

We informed participants that while measuring their coding

performance was one objective, the primary goal was to under-

stand their reasoning and approach when interacting with decision

points. We recorded participants’ screen during the coding sessions

to examine interactions with decision points and to capture further

contextual information. Participants were also asked to think aloud

during the coding sessions to capture real-time thought processes.

Think-aloud protocols can allow insights into cognitive processes

and are straightforward to explain, while not materially shifting

attention away from the actual task [29]. Following think-aloud

protocol procedure, the researchers primarily listened without inter-

vention during the coding sessions [2]. When participants initiated

an interaction, for example when unsure about rules, capturing

qualitative meaningful data was prioritized over strictly avoiding

any interference.

After the initial task, participants were given a brief post-task

questionnaire and were then asked to solve the remaining task set

following the same procedure with interchanged tool modes and

task sets.

4.1.2 Post-Task Questionnaire and Exit Interview. Following both
coding sessions, participants were asked to answer identical brief
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post-task questionnaires with scale questions. See Section B.1 for

the full questionnaire. The questionnaire asked validating ques-

tions such as “The tasks were clearly understandable for me”, and if

significant bugs occurred in order to contextualize participant expe-

riences and verify the reliability of the study setup. Other questions

were aimed at capturing comparative data between conditions, for

example: “Approximately how much time did you spend consid-

ering different solution approaches (e.g. different data models)?”

The results are later used to contextualize other results. Question-

naire items were deliberately limited to asking the most insightful

questions to avoid fatigue [12].

Finally, following both coding sessions and post-task question-

naires, a semi structured exit interview lasting around 10-30 min-

utes was conducted to capture participants’ reflections and opinions

to allow for open-ended exchanges between the researcher and par-

ticipants. See Section B.5 for the questions. The interviews were

audio recorded.

In addition to the open-ended questions about participants’ expe-

riences in both conditions, participants were asked to assess certain

individual aspects of decision points such as perceived quality of

results. They were also asked to rate on a Likert scale from 1-7

whether they would appreciate having this aspect supported by

their currently used AI coding assistant. Participants were asked

about the following aspects of decision points:

• Explicitly being made aware of potential implementation

decisions.

• Being asked to make implementation decisions preemptively

instead of potentially revising output.

• Consistently being presented advantages and disadvantages

of potential implementation solutions.

• Through decisions being made upfront, before code was

generated, less LLM-generated code had to be examined.

• The interactive UI.

Finally, participants were asked to compare the study tasks to

their real-world work and if they had any suggestions for improve-

ments or further development.

4.2 Task Design
Designing the programming tasks was a key part of implementing

the user study. The task sets had to allow the expected behavior to

surface while satisfying a range of requirements around the general

setup of the user study. We designed the tasks not primarily to

test some technical ability but to evoke the necessity for planning

ahead, decision making, and weighing implementation options.

The tasks created for the user study had to fulfill the following

requirements

• Exploratory in nature, meaning nontrivial and open-ended.

To ensure the potential applicability of decision points, par-

ticipants should be confronted with situations that prompt

reflection on alternative approaches and trade-offs.

• Solvable by a range of programming experience levels, re-

flective of the sample group.

• Objectively ratable, to allow for a small quantitative layer.

• Feasible in the given study environment, for example, not

requiring extensive setup.

• Sufficiently challenging for LLM assistance to be genuinely

useful.

• Quickly comprehensible.

As two comparable tasks were needed to allow for the com-

parison of conditions, we implemented two sets of tasks with 10

sub-tasks each. The full set can be found under Section B.2. Each

set had an overall theme. Set 1: Develop an inventory management

system for a small shop, Set 2: Implement a number guessing game.

Participants were given 20 minutes to work through the list of tasks

sequentially with the goal of solving as many tasks as possible.

By dividing each task set into ten sub-tasks, we ensured, that

the overall difficulty level was both manageable across varying

experience levels and progress was objectively measurable between

participants and conditions. The parts were designed to allow even

inexperienced participants to complete at least some tasks, though

completing all tasks was unlikely within the time frame.

Importantly, the task design ensured that the approach taken

to solve a given sub-task influenced the subsequent tasks, and re-

sults of an earlier task regularly were the starting point for a later

task. For example in set 1, Inventory management: The first task

involved loading data from a text file, depending on how this was

implemented, it directly affected how easily participants could later

add backup functionality in a following sub-task. This was an im-

portant aspect, as it meant that participants who anticipated future

tasks could let this anticipation guide their approach, allowing

them to save time or effort in subsequent tasks, thereby potentially

demonstrating the benefits of decision points.

We asked all participants to use Python to avoid introducing

additional variables. Participants generally had limited experience

with Python, and we hypothesized that using a less familiar lan-

guage would mean participants had to spend more time thinking

about potential implementation paths than if they used a language

they were more familiar with. Additionally, Python syntax is con-

sidered relatively simple for beginners, potentially shifting the

focus towards other aspects such as decisions. Finally, to mitigate

constraints stemming from the prototype or the tasks, we asked

participants to write all code within a single file.

4.3 Prototype Adaptations
After we drafted an initial version of the prototype and task-sets,

both were piloted and refined iteratively. We made adaptations

to the prototype in order to streamline certain aspects of the par-

ticipant sessions and reduce unnecessary repeated prompting by

participants. For example, we added instructions to the system

prompt that all code should be written in Python. Adaptations were

necessary to enable Vanilla mode, which enabled a comparison

with a baseline. We designed the study to compare two conditions

that differed only in the presence or absence of decision points. We

implemented a toggle in the settings menu that enabled switching

between the two modes. When set to Vanilla mode, the system used

a shortened version of the system prompt with instructions related

to decision points removed and the other functional components

remained unchanged.

To enhance the overall usability of OptionPilot and make the

study setup more comparable to integrated LLM coding assistants,

we added functionality that enabled continuous access to the code
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file on the participants’ computer in which they wrote their code.

This was enabled by the Google’s File System Access API [5]. This
feature allowed OptionPilot to access the latest version of partici-

pants’ code with every prompt and include it as context in the LLM

request, eliminating the need for participants to manually add this

context for prompts.

4.4 Participant Selection and Sample
Composition

In order to capture diverse perspectives, we aimed to recruit de-

velopers with varying levels of coding experience and different

familiarity with LLM programming assistants. Participants were

required to have at a minimum two years of programming experi-

ence and prior use of LLM coding assistants to ensure that limited

experience would not affect their ability to work effectively. The

inclusion of varying levels of coding experience was expected to

allow for insights into possible differences between user groups.

Participants were recruited at a medium sized software company in

Berlin, Germany. Additionally participants had to have used python

at least once but could not be experienced in it. All participants were

informed prior to the study about the data handling procedures

and were asked to fill out a consent form.

The recruited sample of 14 participants consisted in a majority

of professional programmers and a few participants with adjacent

roles. An overview of each participants’ mode and task sequence is

provided in Table 1. All but two participants were between 35-45

years old with an approximate average nine years of programming

experience. A majority reported spending 15-19 hours a week pro-

gramming. Most participants reported using GitHub Copilot, or

the JetBrains AI Assistant currently or at some point in the past,

with their degree of usage and perception of LLM coding assistants

varying considerably.

During the participant sessions P5, P12, and P14, interruptions

or protocol deviations occurred and this data was excluded from

the quantitative analysis. Their qualitative data was not excluded,

since we did not deemed the deviations so severe as to make their

opinions irrelevant.

4.5 Data Analysis
Following the participant sessions, we aggregated and analyzed

data from all sources to gain a broad understanding of participants’

experiences, behaviors, and perceptions. Given the exploratory

nature of the study, we analyzed the data to allow for comprehensive

qualitative findings. Although we gathered quantitative data from

the questionnaires and task completion scores, the limited sample

size and differing participant approaches led us to interpret this

data only as supporting evidence.

The core of the analysis was based on the qualitative data from

the coding session recordings and open-ended exit-interview ques-

tions. After transcription, the analysis broadly followed the ap-

proach of the Framework Method [8]. After an initial sighting of

the data of the first four participants, we drafted an initial frame-

work to categorize participants’ statements and behavioral cues

into themes and themes into categories. Themes captured both par-

ticipants’ remarks as well as behavior, and occasionally additional

observations like tool behavior.

Table 1: Participants overview.

ID Starting Tool Starting Task Interaction style

P1 Vanilla 2 Varied engagement

P2 Vanilla 1 Reads thoroughly

P3 Vanilla 1 Varied engagement

P4 OptionPilot 1 Reads thoroughly

P5* OptionPilot 1 Reads thoroughly

P6 OptionPilot 2 Briefly skims options

P7 Vanilla 1 Briefly skims options

P8 Vanilla 2 Briefly skims options

P9 Vanilla 2 Varied engagement

P10 OptionPilot 2 Reads thoroughly

P11 Vanilla 2 Briefly skims options

P12* OptionPilot 2 Moderate evaluation

P13 OptionPilot 1 Varied engagement

P14* OptionPilot 2 Reads thoroughly

*Excluded from quantitative data due to protocol deviations or incomplete data.

After we collected this initial set of themes, we grouped instances

from participant sessions that supported these themes in a table.

Following this analysis of the screen recordings, we enriched iden-

tified themes with contextual data from the other data sources in

the findings section to provide context to the results where this was

sensible. We subsequently categorized the resulting set of themes

into higher level categories, which served as the basis for the struc-

ture of the findings section. An example: Category: “Opinions about

always displaying pros and cons”; Theme: “Appreciated for clarity

of structure”.

Some quantitative data was captured from questionnaires and

participants’ scores from the coding tasks. We combined this data

into one table and anonymized it where necessary. To offer a slight

layer of quantitative analysis, we used basic statistics to compare, for

example, task completion performance across different categories

such as tool mode or task set.

Ultimately we integrated all data while drafting the findings sec-

tion in an iterative process of theme identification and refinement

of categories in order to capture a genuine image of participants’

experiences. Qualitative themes were supported by questionnaire

analysis where applicable.

5 Findings
In this section, we present findings from the qualitative first, mixed-

method lab study combining data from session recordings, ques-

tionnaires, and others.

After providing some overview and context, we describe how

participants interacted with the prototype and their overall as-

sessments of decision points in order to establish a foundation to

assessing their potential for addressing the shortcomings. Next,

we focus on participants’ assessment of individual aspects of de-

cision points. Here, participants’ reflections provided particularly

rich insights. Therefore we made them a central focus of the data

analysis.

Participants’ working style and overall approach to solving the

task differed notably. Overall, participants appreciated being able to
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steer the code generation process and valued the clarity created by

consistently highlighting implications as well as other aspects of the

UI. Participants emphasized that the perceived utility of decision

points was closely tied to how relevant the presented information

appeared within the given context.

5.1 Overview and Context of Collected Data
Given the novelty of the proposed approach and the exploratory

design of the research, we designed the study with the expectation

that unanticipated behaviors or phenomena would emerge. The

statistical findings must be interpreted with caution due to the

small sample size and other mentioned factors, and will only be

referenced as supportive information.

The prototype generally functioned as expected, and participants

had no difficulties understanding the tasks, see appendix Figure 21

and Figure 19. One factor we did not fully anticipate was the extent

to which individual participants’ approach differed. This variation

produced a diverse dataset that enabled analysis from multiple

perspectives, but also required interpreting some results in this

light.

5.1.1 Prototype Behavior and Reliability. The prototype performed

largely as intended, and participants engaged with it effectively

without requiring detailed guidance. We revised the initial instruc-

tions after the first sessions based on early observations and par-

ticipant feedback. The primary factor occasionally affecting per-

formance was lengthy conversation histories. This issue was most

pronounced in Option mode, where the extended system prompt

and more complex responses likely contributed. Participants rarely

used the Clear History button unless instructed to do so.

Bugs were mostly minor but did occur, see Figure 20. A recurring

issue occasionally caused contextual data from the first coding

task set to carry over into the second. Although issues such as

invalid JSON responses from the LLMweremostly addressed during

development, they occasionally occurred. Participants reported

more bugs when using Option mode, see Figure 20.

Generated decision points and their options were mostly appro-

priate for the given context. One factor that notably influenced

participant experiences was the frequency and type of decision

points displayed. In certain sessions, only a limited number of de-

cision points appeared, with some participants encountering only

one type of decision point. Three participants did not encounter

one of the two types during their use of Option mode. To ensure at

least minimal experience with both types, these participants were

subsequently given a short demonstration of the missing type.

This variation partly depended on individual participants’ work-

ing style, with participants’ writing highly specific prompts trigger-

ing fewer decision points. In this way, the prototype functioned as

intended. At other times, decision points failed to appear seemingly

at random, adding to the varied frequency and decision point types.

5.1.2 Session Dynamics and Researcher Interventions. During the
coding sessions, we intentionally minimized interactions, but in-

tervened where required for practical reasons. As qualitative data

was prioritized, we provided brief clarifications or reminders about

the tool and environment, for example, suggesting using the Clear
History button, or intervened when bugs occurred. The extent to

which participants verbalized their thought processes varied, for

example some did not articulate their first impressions of decision

points.

At times, participants interpreted questionnaire items differently

and required clarification or brief explanations. The way exit inter-

view questions were introduced varied depending on how much

participants had already mentioned and discussed beforehand. En-

gagement with the exit interview questions varied, with some par-

ticipants offering detailed reflections, while others provided shorter

responses.

5.1.3 Factors shaping Participant Performance and Responses. Par-
ticipants’ general attitude towards AI coding assistants variedwidely.

Some fully embraced using them in their work, while others re-

ported prior negative experiences and only sporadic use. Those

with a more skeptical attitude tended to use the tool less actively,

instead writing more code by themselves, even when the language

was unfamiliar, and they subsequently encountered fewer decision

points. The majority of participants commented, their lack of fa-

miliarity with Python was a limiting factor for their performance,

and, that it increased their reliance on the LLM’s support. However,

several participants preferred to initially reason about the necessary

logic for a task by themselves and prompt the LLM in detail about

how to implement a feature.

A significant factor influencing performance was the learning

curve associated with the setup, language, and overall workflow.

Figure 6 presents the participants’ scores across categories and

shows a performance increase in the second task. Participants at

times reported finding set 2 more challenging. However this assess-

ment is not supported by the participant scores.

Overall, the influence of the mode on participant performance

shows a slight increase in scores from Vanilla to Option mode, as

seen in Figure 6. In Option mode, participants reported spending

more time on exploring different solution alternatives and spend-

ing more time deliberating on them, see Figure 7, and Figure 8. In

Vanilla mode, participants rarely reflected on alternative imple-

mentation approaches, typically adhering directly to the suggested

solutions.

First Task
Second  Task
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Task Set A
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Figure 6: Average results by participants across categories.

Compared to other coding assistants, OptionPilot lacked usability

features such as the ability to directly insert generated code into the

editor, and this was noted by participants. Participants regularly

commented on the missing features.
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While other aspects were mostly minor, participants spent con-

siderable time transferring generated code between the chat inter-

face and their editor. This additional effort diverted their attention

from more reflective aspects of the study, such as evaluating differ-

ent implementation paths.

5.1.4 Comparability to Real-World Scenarios. How participants

perceived differences between the study setup and real work sce-

narios could provide important context for interpreting the results

and identifying directions for future research. Participants occa-

sionally shared these reflections spontaneously during the sessions,

and were also explicitly asked to compare their experience with

typical work situations in the exit interview, see Appendix B.

A key difference mentioned compared to their everyday work

was that, unlike in the study session, they usually do not start

from a blank canvas but work within an existing codebase. In real

projects, they must consider significantly more contextual factors

when implementing new features.

Parallel to the study setup, participants described that in their

regular work they had similar freedom to implement features as

they see fit and in that they explore, compare, and select between

multiple possible implementation paths.

Participants also reported spending less time reflecting on their

solutions before code was produced, as well as focusing less on the

code quality than they would have in a work scenario, as they knew

the code they produced would not be used further. To counter this

anticipated effect, the task design was only partially successful and

aimed to induce decisions into the tasks by ensuring that different

implementation choices had to be made that affected subsequent

tasks differently.

5.2 Participants Usage and Evaluation of
OptionPilot

We describe how participants engaged with OptionPilot during the

study and how they evaluated their overall experience with the

tool. Overall, participants intuitively made use of the interface and

expressed optimism for the potential of the underlying idea. They

appreciated the ability to steer the interaction through decision

points but emphasized that their usefulness depended on their

appropriate timing and frequency within the current workflow

context.

5.2.1 Decision Point Interaction Patterns. Participants quickly be-

came comfortable using the tool after a brief introduction. Sev-

eral themes in participants’ interactions with OptionPilot emerged.

Those participants who started by using the tool for code generation

generally progressed through the task list while other participants

leaned more towards writing their own code and using the assistant

to fill in gaps. When using the tool, one participant chose to write

their own instructions while others just copied the task instructions,

which was explicitly allowed.

When participants who planned out more of the code by them-

selves and mostly referred to the assistant to fill gaps, this caused

the tool to output fewer decision points and more often output code

immediately. In general, participants who started with their own

code moved towards using the assistant more and more over both

task sets, as they seemed to notice they could make more progress

this way.

In Option mode, participants tended to spend significantly more

time engaging with different path options, see Figure 7, Figure 8. In

Vanilla mode, participants progressed more quickly and tended to

accept code suggestions without contemplating different paths. P4

commented while working in Vanilla: “Here, I didn’t think about

what alternatives to the given approach there could have been.”
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Figure 7: Results of Post-Task Questionnaire Question 6.
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Figure 8: Results of Post-Task Questionnaire Question 7.

Participants engaged with decision points in most cases when

they were presented. Only in rare cases did participants ignore

decision points and instead prompt for alternative solutions. En-

gagement with decision points varied notably across participants,

with some carefully reading the implications of each option, while

others made quick decisions without further reflection. Similarly,

with multi decision points, some participants contemplated each

individual decision while, others tended to follow the preselected

recommendations. Especially when participants perceived a de-

cision to be too granular or disliked both options they tended to

choose one option quickly without considering their implications.

5.2.2 Overall Opinions on Decision Points. Participants generally
regarded decision points as helpful and appreciated their presenta-

tion in the chat interface. Participants expressed appreciation for

the ability to steer the output by choosing options as well as for a

variety of other reasons. For example P8 commented: “I appreciated

being able to choose between options, to be able to intervene a bit.”
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A recurring theme was that participants appreciated decision

points only when they appeared at appropriate moments in the

interaction. Participants noted that decision points increasedmental

load when they had to engage with them, especially when the

implications of different choices were not directly obvious and

required anticipating future consequences. P2 said: “When you

get options, you also have to read them.” Participants expressed

similar views regarding the accompanying information provided

for decisions and options. The perceived contextual relevance of

the decision points was a key factor shaping participants’ overall

evaluations. P1 said: “The information should be to the point.”

Expanding on this, participants expressed interest in being able

to control when decision points were shown or how frequently

they appeared. P12 specifically suggested functionality enabling

users to define in detail where decision points should appear, for

example, when a certain error occurs. In general, participants ac-

tively engaged with the concept and suggested further ways to

expand it. P11 commented: “It would be interesting to see this in

a more complex task, how the decisions branch out.” Some raised

concerns that only displaying two options at a time could itself

obscure alternative implementation paths.

5.3 Participants Assessment of Individual
Aspects of Decision Points

We examine participants’ opinions and reflections on individual

aspects of decision points. In addition to participants’ comments

during Option mode, we asked participants to assess five specific

aspects of decision points individually in the exit interview, see

Figure 9.

These assessments offered deeper insights into which elements

participants perceived as most beneficial, which caused friction and

how they influenced the overall experience.

Participants generally appreciated the explicit surfacing of key

decisions and the structured display of advantages and disadvan-

tages, thoughmany expressed a preference for being simultaneously

able to immediately access accompanying code.

A_1: Surfacing Decision

A_2: Steering Output

A_3: Highlighting Implications
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Figure 9: Average participant agreement with the statement
“I would like this feature to also be available in the AI pro-
gramming assistant I currently use” for specific aspects of
OptionPilot.

5.3.1 Explicitly Surfacing Decisions. Weasked participantswhether

they appreciated that decision points explicitly highlighted poten-

tial implementation paths. Almost all participants valued this aspect,

reporting that it helped them actively steer the output. Participants’

attention was actively directed towards the decisions.

Participants frequently noted that by consciously making deci-

sions, the perceived quality of the results increased, particularly

over the long term. Participants theorized about several mecha-

nisms for this effect, including deliberate reflection on decision

implications and the correction of inaccurate assumptions. P14

commented: “The tool made me break down the task into steps and

made me think ahead, what exactly do I want to do here.”

P3 appreciated the approach for avoiding overly agreeable behav-

ior: “I want to know about the pros and cons of different approaches

instead of just being told I’m right.”, while P13 used the term tunnel

vision to describe interactions with other assistants.

Participants saw particular value in being made aware of de-

cisions in areas where they had limited experience or for more

complex tasks. P11 noted: “When you run into complexities, I can

imagine that decision points could help to avoid missing informa-

tion that a regular assistant would just brush over.”

As briefly outlined in Section 5.2.2, the most commonly reported

perceived drawback of the approach was having to at times make

decisions that were deemed unnecessary. P11 commented: “When

you’re going for speed, having to focus on the decisions can feel

less straightforward.” Some participants reported feeling frustrated

when decision points highlighted decisions or options they did not

perceive as relevant. P3: “This is annoying right now.”

5.3.2 Preemptive Decision-Making. Decision points were designed

to prompt users to make implementation choices proactively, rather

than being presented with a solution first and potentially adjusting

it subsequently. Participants’ opinions regarding this were mixed.

While many appreciated being able to steer the output preemptively,

others expressed reservations and held contrasting views. P5 stated:

“Then you don’t have to read pages of stuff you maybe didn’t want

to.”, while P9 offered an opposing view: “Maybe you’d rather first

see what is being produced and then correct it.”

Actively engaging with a decision led participants to think more

deliberately about the implications of different implementation

paths. P13: “It motivates you to work a little more consciously.” In

some cases, this actively avoided work in the following subtasks

through this. For example, P1: “When I can purposefully go in the

right direction from the beginning, that’s definitely a big advantage.”

This behavior stood in contrast to participants’ conduct while

working with Vanilla mode, where they tended to adopt the tools

proposed solutions without further reflection, modifying generated

code only when it proved ineffective for the current task. While P14

commented: “I just tried the given code but didn’t pay attention to

any details.”, in many cases, participants did not perceive this as

problematic. Although participants appreciated being able to make

decisions easily, they simultaneously expressed disapproval of not

being able to examine associated code, as the code could provide

them with further information about what each approach might

entail. P3: “In reality I’d rather have the code directly.”

5.3.3 Consistently Highlighting Implications. The consistent dis-
play of potential benefits and drawbacks of options was generally
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appreciated. Participants valued not just the inclusion of the in-

formation but also the visual highlighting. P1 commented: “I find

highlighting pros and cons very valuable.”, “I perceived the mental

load as lower with Options because it showed the implications

of options.” When participants perceived a decision as impactful,

they frequently studied the implications and mentioned this when

reflecting on the reasons for certain decisions.

Participants consistently appreciated being able to grasp informa-

tion quickly through the UI. P11: “I liked seeing the pro’s and con’s,

because you can grasp it quickly.” The color highlighting in particu-

lar was appreciated for allowing fast comprehension. P1 about the

difference between using OptionPilot and ChatGPT: “There they

don’t highlight it so clearly, pros in green and cons in red.”

Nevertheless, as in previous themes, the display of pros and

was only appreciated while the information was deemed relevant.

P13 commented: “It’s use case dependent, often I’m not in a mode

where I would want to read that.” Single decision points initially

hid further detailed information for each option, including pros

and cons behind a toggle and participants intuitively interacted

with this feature. Some participants expressed a preference for the

toggle to be expanded by default.

5.3.4 Delayed Necessity to Read Code. One potential benefit of

decision points is allowing users to make preemptive decisions in

plain language, therefore potentially reducing the amount of code

users need to read compared to tools that generate code immediately.

This was only partially reflected in participants’ experiences and

was ranked the lowest of all individually evaluated aspects, see

Figure 9. Some participants expressed appreciation for this, P7: “I

didn’t have to read first, OK what does this block of code do, is it

correct?” or P4 about using OptionPilot: “I already had an idea of

what would be in the code, so I could check it quicker.” Nevertheless,

most stated that they would in any case read all code, especially in

a professional setting, and that this was not a perceived benefit of

decision points mirroring opinions highlighted in Section 5.3.2.

5.3.5 Interactivity. Decision points allow users to interact with

them by clicking instead of prompting, potentially saving time and

effort. For example, when presented with a decision, instead of

manually prompting “Implement option 1”, decision points allowed

users to click on the Generate Code button. Participants generally

appreciated this feature, see Section 5.2.2. While comments like

P8: “I liked that, I don’t always want to describe everything.” were

common, interactions with decision points during the sessions were

in part less in depth as expected.

The Proceed button for single decision points caused confusion

and was rarely used, even after further explanations. Participants

overwhelmingly selected Generate Code instead of the Proceed
button, which could have led to additional decision points being

generated, reducing opportunities for further reflection on the in-

teractive aspects of the interface. Nevertheless, after a short initial

introduction, participants intuitively and consistently made use of

the interactivity of decision points.

Several participants proposed expanding the interface with ad-

ditional buttons, for instance, a None of the Listed Options
button for situations where the provided options were inadequate.

6 Discussion
In the following, we discuss the findings of the user study as they

relate to the research questions as well as the broader context

of LLM interactions. We examine how the observed participants’

behavior and feedback reflect the assumptions underlying decision

points to understand what makes decision points effective.

Decision points generally demonstrated potential to address pre-

mature outputs, obscured implementation paths, and high cognitive

load, with their effectiveness depending on contextual relevance.

Beyond their application in code generation, the interactive fea-

tures that allow users to quickly and conveniently communicate

their intent could hold value for a wider range of LLM chatbot use

cases.

6.1 Summary of Findings
Overall, decision points showed considerable potential and were

received positively by participants. Participants consistently ap-

preciated the explicit presentation of decisions, the clarity with

which implications were presented, and the resulting ability to

steer the code generation process. Measuring quantitative perfor-

mance improvements within the study proved challenging due to

the limited sample and varying participant approaches. Neverthe-

less, the study yielded valuable qualitative insights and established

a robust foundation for further investigations of the concept. The

findings offer actionable guidance on refining decision points and

clues for potential integrations into existing LLM coding assistants.

6.1.1 Prototype Performance and Participant Behavior. The pro-

totype successfully delivered on the intended concept, surfacing

relevant decisions to the user in an intuitively usable, interactive UI.

The generated JSON objects were appropriately populated by the

LLM and rendered in the UI, leading to a consistent user experience.

Longer conversation histories at times led to decreased answer

quality, possibly introduced in part by the generally documented

loss of performance in multi-step conversations in LLMs[14]. Oc-

casional bugs in context handling during Option mode may have

contributed to this, and could have influenced the lower average

task completion score for Option mode seen in Figure 6.

As previously mentioned, iteratively drafting the system prompt

in order to effectively outline instructions for which decisions to

surface to the user at what stage is key for achieving the intended

positive impact. The balance struck for OptionPilot proved gener-

ally suitable for the study, with participants who prompted more

narrowly were appropriately presented with fewer decision points.

However, this factor alone does not fully account for the observed

variation in the frequency and types of decision points generated

among participants. Future systems should prioritize determining

the right level of granularity through an effective system prompt,

as well as potentially enabling mechanisms for users to control this

granularity.

The purpose of implementing OptionPilot was not to replicate

the experience of integrated LLM coding assistants, but to enable

participants to engage with decision points in a way that yielded

meaningful insights into their potential. However, certain missing

features, such as automatic code insertion, affected participants’

experiences and somewhat limited the inferential strength of the

results.
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When decision points were enabled in Option mode, partici-

pants generally spent more time considering different solution

alternatives.While several factors may have influenced overall per-

formance, the additional time spent reflecting on different solutions

did not lead to a measurable performance improvement.

Participants’ general approach to solving the tasks ranged from

directly copying all tasks into the chat window to using it to fill in

gaps. Similarly, engagement with decision points differed notably

between participants. Although the perceived relevance of a de-

cision generally influenced how much participants engaged with

it, individual differences played a role, with some leaning towards

reading each individual option and others towards making quick

decisions. The results were likely further influenced by participants’

general attitude towards LLM assistants, their degree of language

familiarity, and individual motivation. While participants quickly

grasped the concept of decision points and intuitively used them,

these contextual factors should be considered when evaluating their

applicability to real-world programming scenarios.

6.1.2 Participants’ Assessment. Participants responded positively

to decision points and valued their clarity and structure. They

appreciated the ability to choose between different options and

expressed optimism about the potential of the concept. Participants

reported that decision points gave them a sense of control and

reduced the overly agreeable behavior seen in other assistants.

While being prompted to decide temporarily increased cogni-

tive effort, this load represents constructive germane load when

decision points are effective. Participants agreed with the assess-

ment that this approach holds potential to lower the overall mental

load through reduced need for corrections and better long term

code quality overall. When decision points appeared too frequently,

or if they were perceived as overly detailed, the temporary in-

crease in cognitive effort was perceived as a burden by participants.

Therefore, decision points both reduced and increased mental load

depending on their relevance.

Participants appreciated how decision points highlighted the

implications of each option and presented information in a compre-

hensible way. They emphasized that consistent visual cues, such as

green text for advantages and red text for drawbacks, helped them

quickly assess trade-offs.

The fact that decision points prompted users to make decisions

before code was generated received mixed reactions. Participants

expressed a preference for being shown corresponding code imme-

diately alongside the information in decision points, as this could

allow for additional insights into the implications of an option.

The interactive elements of the interface were generally well

received, however these features received limited attention, and

without targeted questions, were only mentioned occasionally.

6.2 Interpretation and Implications
We interpret the findings of the study in relation to the research

questions and derive practical and theoretical learning from this

analysis. We connect observed participants’ behavior and feedback

to the assumptions underlying the concept of decision points, and

we examine to what extent the concept demonstrates potential to

address the identified shortcomings.

6.2.1 Premature Outputs (RQ1). To address RQ1, we examined

the potential of decision points to mitigate premature outputs. We

understood premature outputs as the generation of code or accom-

panying artifacts such as explanations, while making premature

assumptions, which can lead to misaligned solutions, unnecessary

revisions, and a loss of user’s control. Decision points attempted

to address premature code generation by deliberately inserting a

pause between the user’s input and the model’s output, prompting

the user to clarify their intent in order to avoid low confidence

assumptions. This additional reflection on the goal and conscious

decision making represents additional germane load.

Findings from the study indicate that this mechanism could be

a very effective tool in the right scenarios. Participants generally

appreciated decision points for enabling them to steer the output

preemptively rather than correcting undesired results. By explic-

itly prompting users to clarify their intent in case of ambiguities,

decision points appear to have potential for countering the com-

mon tendency of LLMs to make uncertain assumptions in case of

missing information. Participants believed that this mechanism

would lead to better long term effects, though the study could not

quantitatively demonstrate this.

While premature outputs based on incorrect assumptions are

clearly undesirable and should be avoided, other situations are more

nuanced. Participants criticized instances where they were required

to engage with decisions they considered irrelevant. Finding the

right balance between preventing incorrect assumptions and avoid-

ing unwanted interruptions strongly depends on the situational

context. In this regard, multi decision points may hold potential for

an effective approach, as they allow users to quickly review and

resolve several decisions simultaneously. Through an interface that

surfaces multiple underlying assumptions to the user at once, users

could conveniently steer or correct assumptions in cases where

deeper engagement with individual decisions is not warranted.

6.2.2 Obscured Implementation Paths (RQ2). To answer RQ2, we
studied, how effective decision points could be in addressing ob-

scured alternative solution paths by explicitly surfacing key de-

cisions, and highlighting the implications and trade-offs between

alternative choices.

In this regard, the concept showed clear potential. Participants

consistently valued being made aware that multiple paths forward

existed, particularly in cases involving unfamiliar tasks, complex

scenarios or, decisions with long term implications. Participants

stated that decision points helped them avoid the lack of trans-

parency in other assistants. The consistent presentation of trade-

offs and implications was appreciated for conveniently highlighting

relevant aspects which would otherwise require attention or effort

to obtain.

Decision points perceived as inadequate forced users to focus

on choices they considered irrelevant, therefore introducing ad-

ditional extraneous cognitive load, and should be avoided. This

surfaced during the coding sessions, particularly since participants

at times did not perceive the produced code as relevant in the long

term. Achieving the right balance for deciding when to surface

decisions will depend on careful context engineering, fine tuning of

the system prompt, and the reasoning capabilities of the underlying

LLMs.
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Participants preferred seeing the generated code immediately

alongside the presented options. This observation forms a key point

in our analysis. When implementation paths are explicit and users

can quickly comprehend the context of the generated code, much

of the potential burden associated with premature outputs can

be avoided. By displaying implementation paths or revealing un-

derlying assumptions with decision points, users can recognize

potential mismatches quickly and potentially intervene, while the

accompanying code may provide additional relevant information

for assessing an option. In short, displaying assumptions and key

decisions next to generated code could allow users to comprehend a

solution quickly while offering detail in case they seek additional in-

formation. Although participants expressed mixed reactions about

not receiving code along with decision points, the overall cognitive

effort involved in reviewing code might nonetheless be decreased

through a reduced necessity to review code generated under incor-

rect assumptions.

6.2.3 High Cognitive Load (RQ3). RQ3 investigated the extent

to which decision points hold the potential to mitigate cognitive

overload when using LLM coding assistants by addressing the pre-

viously discussed shortcomings or through additional mechanisms.

Beyond the previously discussed aspects, decision points demon-

strate potential to reduce cognitive load by imposing a consistent

structure and highlighting presented information, enabling users

to efficiently identify relevant information.

Conversely, decision points should be presented selectively to

ensure the cognitive effort required for deliberate decision-making

does not exceed their potential positive effects such as reducing

extraneous load. These findings align with previous studies that

found that add-ons to chat interfaces need to be balanced against

the additional cognitive load they potentially introduce [31, 4].

One mechanism of decision points with the potential to address

high extraneous cognitive load is collapsible information within an

output. By hiding additional information about an option by default

but making it readily available without additional prompting effort,

this approach counters information overload and was appreciated

by participants. This concept could be explored further in future

implementations. As users preferred immediately being able to

access code, directly including generated code for each option under

an additional toggle could be a promising approach.

Another mechanism to avoid cognitive load when faced with

a decision could be defaults or recommended decisions. Multi de-

cision points included recommendations for each decision, while

single decision points did not. Participants expressed a preference

for defaults or recommendations being presented in case they were

unsure or did not perceive the decision to be relevant, and men-

tioned this for single decision points.

Decision points introduced interactivity into the usually text

based interactions with LLMs, reducing the need for prompting.

While features like using the toggle to reveal more information for

an option were intuitively used by participants, they mostly only

commented on this when being prompted about it. Some partici-

pants expressed ideas for further buttons such as Generate more
Options or None of the Above Options. Introducing additional

interactive elements may offer significant further potential to im-

prove the experience of using LLM coding assistants or LLMs in

general. However, further exploration is needed to identify how and

where this could prove effective. Through aspects like interactivity,

decision points demonstrate that the concept holds potential for re-

ducing cognitive load over what could be achieved with prompting

alone.

6.3 Limitations and Future Work
While the study provided valuable insights into the potential of

decision points and their implications, open questions remain re-

garding the applicability to real world programming scenarios. The

concept of decision points and specific aspects of them could hold

potential beyond their application in code generation.

6.3.1 Limitations from Methodology. A more narrowly scoped ap-

proach could have reduced ambiguity and ensured more consistent

participant engagement with the core research questions. Option-

Pilot represented a simplified prototype compared to integrated

LLM coding assistants, reducing the transferability of the findings

Additionally, the study setup did not fully reflect authentic devel-

opment situations inmultiple aspects. Asmentioned by participants,

developers typically do not start from a blank canvas, but need to

take existing context into account. Decision points would need to

effectively account for this context to present useful options, which

may pose a significant challenge.

Participants generally had limited Python experience. Examining

how users experienced with a language engage with decision points

could be insightful.

Future research could include more specialized evaluations, for

example, assessing the difference in perceived mental load using

specialized established measures. In general, future research could

investigate the concept with additional subgroups and increased

sample sizes to expand the findings discussed here. This study did

not capture long-term effects, such as how participants might adapt

their behavior when anticipating decision points or how decision

points could impact the overall code quality in the long term.

6.3.2 Refining the concept of Decision Points. There are several

promising directions for future work to build on the initial findings

discussed here. Future work could explore additional functionality,

such as offering users more interactivity, for example, a buttons for

generating additional options for a decision.

OptionPilot presented two types of decision points, both show-

ing potential value in slightly different situations. Future iterations

could explore whether to consolidate or add further designs for

different situations or user preferences. As each additional type of

decision point would require some degree of additional familiariza-

tion by users, adding several types comes with drawbacks.

These themes highlight the importance of preventing cognitive

overload for users. Precise contextual understanding by the assis-

tant is therefore critical, to ensure that decision points are presented

only when relevant. Future implementations could explore different

mechanisms for allowing users to control how frequently decision

points appear or at which occasions specifically. This aligns with

prior research suggesting that giving users greater control over their

assistants may enhance the interactions effectiveness [20]. Part of

this refinement could involve distinguishing between functional
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refining requirements for a solution and technical implementation

decisions concerning how to realize them.

Broader questions remain regarding how future workflows in-

volving LLM coding assistants and how the notions of augmentation

and automation, will evolve. A stronger theoretical foundation is

needed to account for the rapid and continuous innovations in

the field of LLM assisted programming. This research could have,

for example, benefited from a standardized framework enabling

direct comparison of decision points against a benchmark. Future

research could examine how decision points may integrate with or

enable emergent trends like agent-driven workflows.

6.3.3 Applications Beyond Coding. Although we initially designed

the concept of decision points for code generation, the underlying

principles are transferable to a broader range of LLM applications.

Making key choices explicit to clarify user intent can similarly

benefit related activities in software engineering and beyond. The

underlying assumption is that similar challenges, such as insuf-

ficient intent clarification or hidden assumptions, occur in other

areas where LLMs are used. For instance, when prompting an assis-

tant to generate documentation, decision points could be presented

for adjusting aspects like the intended audience or desired level of

detail. When generating a script for a presentation with a general

purpose LLM chatbot, the chatbot could display a multi decision

point allowing the user to adjust parameters such as tone, level

of formality, or structure, thereby helping the user steer the out-

put. Our findings suggest that in such cases, an initial draft of

the generated presentation, based on the models best assumptions

could be displayed in addition to the decision point, highlighting

assumptions and path decisions.

Additionally, the interactive features of decision points could

feasibly be integrated into a wide range of LLM chatbot interactions

with relatively little effort. For instance, when an LLM chatbot

prompts a user with a question such as “Should I do X”, the chatbot

could incorporate a button that lets users confirm the action with

a single click, eliminating the need for prompting. Pre-loading

the contents of these buttons, as implemented in single decision

points, could make the interaction highly responsive, which could

be valuable in certain situations.

Likewise, the expandable design of single decision points could

serve as a lightweight mechanism for improving information acces-

sibility on longer chatbot responses. Toggles in general purpose or

specialized chatbots could allow users to hide or show additional

information on demand without overwhelming the main output or

requiring additional prompting.

7 Conclusion
We introduce the concept of decision points as an interactive, path-

oriented approach to LLM-driven code generation. We developed

OptionPilot as a proof-of-concept to demonstrate the concept and

present findings from initial user experiences stemming from a

mixed-methods, qualitative first user study. The core concept of

decision points is the addition of UI elements to LLM chat inter-

faces that would prompt the user to make explicit choices rather

than relying on potentially inaccurate assumptions, therefore con-

sciously steering the output of LLM-based coding assistants. Instead

of generating a solution immediately after a single prompt, decision

points offer a lightweight, structured way to surface alternative

implementation paths or to prompt users to clarify ambiguous

instructions.

While results stem from an early-stage prototype and would

benefit from further validation, the study showcased the potential

of decision points to mitigate premature outputs (RQ1), increase

user control by surfacing implementation paths (RQ2), and through

a combination of this, as well as other factors, reduce cognitive

load under certain conditions (RQ3). Findings indicate that careful

calibration of the system instructions is required to ensure that

decision points appear with appropriate frequency and content.

The graphical highlighting of decisions and their implications

enabled participants to quickly grasp alternative implementation

paths and assess their suitability compared to typical LLM outputs,

which vary in structure and obscure underlying decisions. We find

that the two types of decision points we implemented may be ef-

fective in different scenarios, which raises questions about possible

future designs. Future work could evaluate the long-term use of

decision points, integrated into IDE-based assistants, in real-world

programming scenarios in order to build upon the findings of this

study.

In the study, participants expressed a preference for being shown

the generated code alongside the corresponding decision points.

These findings imply that premature outputs are problematic pri-

marily when the underlying design decisions and assumptions for a

given code output remain obscured. Providing users with informa-

tion underpinning a solution, for instance, through a multi decision

point, could enable users to interpret the corresponding code more

effectively and overall gain a more holistic understanding compared

to only being presented with code or a decision point. In this way,

a future decision point design that surfaces decisions and under-

lying assumptions alongside code for a default option, potentially

accessible via a toggle, could prove effective.

Certain features of decision points, such as interactive buttons

for confirming actions or collapsible sections for additional infor-

mation, may be valuable beyond coding assistants. The concept of

decision points illustrates how interactive mechanisms could en-

hance user agency and transparency across human-AI collaboration

scenarios. The central challenge is to recognize existing limitations

of LLM assistants and to develop mechanisms that address them

through user input in the most convenient way possible.
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Appendix
A Implementation Documentation
A.1 OptionPilot System Prompt
prompt_system_optionPilot = """

******BEGINNING OF SYSTEM PROMPT******

*** BEGINNING OF DESCRIPTION OF YOUR ROLE ***

# You are a helpful coding assistant and will be asked to assist a user in a coding task.

# You should have a conversation with the user and help them with the task.

# You should always format your responses in a specific JSON schema that is provided to you.

# You should always respond with nothing else than this valid JSON schema! It’s extremely important that you follow this schema.

# Your response must be a valid JSON array of objects, where each object can contain a combination of answer_text, code_output,

decision_point and/or multiple_decision_points fields.

# In the following you will find additional instructions about how to use these objects to answer user requests

# You should follow the following process to answer the user request:

1. Understand what the user is trying to do. - For this, consider all the information that is available to you: The prior conversation including

potential prior choices the user has made, the content of the context file, the user request, etc.

2. Come up with a response to the user request.

3. Reason about whether there are any points in the answer that would make it appropriate to offer decision points. - For this, consult the

description that you were given about things that you should consider giving the users multiple options for.

4. Come up with the revised response that now possibly contains a decision point or multi decision points.

*** END OF DESCRIPTION OF YOUR ROLE ***

*** BEGINNING OF DESCRIPTION OF OUTPUT FORMAT ***

# Here is a description of the different objects that an answer can be composed of: - answer_text: For explanations, advice, or questions to

the user. - code_output: For providing Python code relevant to the task. - single decision_point: For offering the user a choice between 2

options, with each decision point containing a description and at least two options. - Each option must have a title, a description, pros, and

cons. - Use this in case there is a single big decision that the user has to make that will have a big impact for example for further extendability.

- multi_decision_points: For offering the user a choice between multi decision points. - multi_decision_points can have up to 5 decisions. -

For every decision here you should offer exactly 2 options. - Only answer with a multi decision points object if there are at least 3 decisions

to be made. - For every decision you should make a suggestion for the user to choose in the JSON.

# In the following you will find a description of when to use a multi decision point and when to use a single decision point.

# In the JSON schema you will find the exact fields that you should return for each type of object

# You are free to combine these fields within each object as appropriate for the situation. - You can include as many objects as needed in

the response array, and you may order them in any way that best supports a natural and helpful conversation. - For example, your response

can contain a sequence such as text, code, text, or text followed by a single decision point, or other combinations. - (there are some exceptions

for decision points that will be described in the following).

*** END OF DESCRIPTION OF OUTPUT FORMAT ***

# In the following the JSON schema is described that you must follow to answer the user request including descriptions of what the

different fields should contain.

*** BEGINNING OF RESPONSE SCHEMA ***

response_schema_json_OptionPilot

*** END OF RESPONSE SCHEMA ***

*** BEGINNING OF DESCRIPTION OF HOW TO OUTPUT CODE SNIPPETS ***

# Here are instructions that you should follow when outputting code snippets:

# When you answer with a code snippet that is supposed to replace an existing piece of code! - Always add an explanation as a text block

telling the user which bit of code is supposed to be replaced. - So for example if you want to replace a specific function, include a text block

in the response that says what part of code the code snippet is supposed to replace.

# When a change is complex and requires code to be added or changed in multiple places, - you should always output a text block that

says which lines of code the new code snippets are supposed to replace.

# When it is appropriate to suggest code changes at multiple places in one response, return these changes as multiple individual code

snippet responses. - In this case you should for every code snippet also output a text block with explanations / instructions. - The output

should then have alternating text blocks and code snippet blocks.

# It’s better to add a bit too much explanation to code than too little.

*** END OF DESCRIPTION OF HOW TO OUTPUT CODE SNIPPETS ***

*** BEGINNING OF INSTRUCTIONS FOR WHEN AND HOW TO USE DECISION POINTS ***
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# Background information on why you should use decision points: - Use this information to better understand your role and how to

answer the user request. - Current LLM-based coding tools often provide "point solutions" upon a user request, immediately generating

code, even if there are many open questions about how the code should be implemented, which has a range of negative effects. - This could

occur for example when: - Users may have entered incomplete information and the LLM just makes assumptions on what the best way to

proceed. - LLMs may make incorrect assumptions about underspecified details or propose solutions prematurely in multi-turn conversations,

leading to unreliability; - This has a range of negative effects, for example: - Obscuring alternative implementation paths and their trade-offs;

- Cognitive overload when users have to skim long responses of an LLM in order to understand the underlying decisions; - Users may accept

generated code without reading it and without realizing it has significant implications for the future of their project.

# You as a helpful coding assistant should address these issues by, when appropriate, instead of immediately generating code, surfacing

decisions to the user and asking for their input on the decision. - For this, the JSON schema that you should respond with has two types of

decision objects: "decision points" and "multi decision points". - Both types of decision points will be displayed in a concise way to the user,

and the user will be able to select one of the options.

# Detecting potential decision points is a crucial part of your role as a helpful coding assistant. - Therefore, you should answer with

decision points if you detect the following: - You need to clarify the user’s intent or gather more information before proceeding with code

generation, especially when the initial request is ambiguous or lacks sufficient detail. - The task requires an architectural decision or presents

multiple valid implementation approaches. - These decisions can have far-reaching implications for the future extensibility or capabilities

of the code the user is developing. - There are significant trade-offs associated with different solutions that the user should be aware of

(e.g., performance, complexity, dependencies, scalability). - By presenting these, you support the user in making informed and effective

implementation decisions. - The user is in an "exploration mode" and is unsure how to proceed, needs help brainstorming potential solutions,

or is decomposing a problem. - Offering structured options helps them navigate the design space and build understanding. - When a complex

task needs to be broken down, and there are multiple valid steps or sub-problems to address first.

# You have the ability to answer to the user request with "single decision points" or "multi decision points" - Here are instructions for

when you should answer with which

# When to use "single decision points" - When you only want to ask the user for a single decision you should always offer a decision_point

and never a multiple_decision_points. - For big decisions that the user has to make. Decisions that are worth weighing pros and cons of

different implementations. - Things that have far reaching implications for the future of the code that the user is developing. - For example

when choosing a database, a single decision point should be used for deciding between sql and no-sql

# When to use "multi decision points" - Multi decision points are for smaller decisions that the user has to make, things that are less

consequential and have less far-reaching implications for the future of the code. - A multi decision points section is used to offer multiple

smaller decisions to the user at once. - Use this when multiple decisions have to be addressed at once. - Here are some examples for when to

offer multi decision points: - When there are a couple of smaller decisions to be made before implementing a function that the user has

asked for. - Handling of edge cases. - When a couple of smaller things have to be decided that could be relevant later in the development. -

Try to understand what the user is developing. Anticipate what decisions lie ahead when implementing this. - If you offer multi decision

points, this should always be the last point in a conversation before producing code for the user. - This does not mean you always have to

offer multi decision points before returning code to the user. - If all things that are relevant have been addressed you can just answer with

code and an accompanying text. - But often it’s a good idea to clear up smaller but relevant last decisions with multi decision points before

returning code to the user. # If the user is asking for assistance with a task where a couple of bigger decisions have to be made, then you

should clear up these decisions by offering the user several "single decision points" sequentially, waiting for the user input on each decision,

then answering with the next single decision point.

# Do not offer any decision points for very minor decisions. - But do adapt to the scope of the project that the user is working on. -

Meaning when the user is working on the early stages of a project and you can’t tell what the user is trying to develop, offer more decision

points that clear up possible hurdles for that project later on. - In this case it would be a good idea to clear up smaller things with multi

decision points. - In case everything is clear or there are no implications relevant for the future of the code that the user is developing, do

not offer any decision points. - In this case it is completely valid if you answer with a code snippet response or a text response. - For example

do not ask about how to name a function if it doesn’t have any implications for further functionality of the code. - Do not offer decisions for

things that have already been decided! - Make sure you maintain a complete understanding of what decision the user has already made and

do not ask for decisions on things that have already been decided.

*** END OF INSTRUCTIONS FOR WHEN TO USE DECISION POINTS ***

prompt_task_specific_instructions

******END OF SYSTEM PROMPT****** """

A.2 OptionPilot System Prompt JSON Response Schema
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{
"answer_text": "A text answer to the user request, explanations, advice, or clarification questions for the user",
"code_output": "An output of code that is relevant to the user request, Python code to help with the user's task",
"decision_point": {

"decision_point_description": "A short description of what has to be decided",
"options": [

{
"title": "Title of the option",
"description": "A short description of what choosing this option would entail",
"in_depth_description": "A more in depth description of what choosing this option would entail",
"pros": ["List of 1-3 pros of choosing this option"],
"cons": ["List of 1-3 cons of choosing this option"]

}
]

},
"multiple_decision_points": {

"decisions": [
{

"title": "Title of the multi decision point",
"short_description": "Short description of the decision in this decision point",
"options": [

{
"id": "Assign a unique id to this option",
"title": "Title of the option",
"short_description": "Short description of the option",
"pros": "Short Text about the main pros of choosing this option",
"cons": "Short Text about the main cons of choosing this option"

},
{

"id": "Assign a unique id to this option",
"title": "Title of the option",
"short_description": "Short description of the option",
"pros": "Short Text about the main pros of choosing this option",
"cons": "Short Text about the main cons of choosing this option"

}
],

"suggested_decision_option_number": "Answer with the id of the recommended option for this decision"
}

]
}

}

A.3 OptionPilot Option Confirmation Prompts
prompt_confirming_option_single_decision_point = """

# The user has selected the following option from the list for you to proceed.
*** BEGINNING OF USER SELECTED OPTION ***
{option_from_previous_response}
*** END OF USER SELECTED OPTION ***

# The user has selected the following way to proceed:
*** BEGINNING OF USER SELECTED WAY TO PROCEED ***
{user_selected_way_to_proceed}
*** END OF USER SELECTED WAY TO PROCEED ***

# The user also has the option to provide additional instructions:
*** BEGINNING OF ADDITIONAL INSTRUCTIONS FROM USER ***
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{additional_instructions_from_user}
*** END OF ADDITIONAL INSTRUCTIONS FROM USER ***

# Here is the up to date content of the file that the user is working on:
*** BEGINNING OF CONTEXT OF FILE ***
{context_of_file}
*** END OF CONTEXT OF FILE ***

# Proceed with implementing the option that the user has selected while taking into account all the
information that is available to you.
- This should take into account previous decisions that the user has made.
- It should also consider the context of the file that the user is working on.
- If the user has provided them, incorporate the additional instructions that the user has provided.
"""

prompt_confirming_multi_decisions = """
# The user has made the following selections:
*** BEGINNING OF SELECTIONS ***
{selections_data}
*** END OF SELECTIONS ***

# The user also has the option to provide additional instructions:
*** BEGINNING OF ADDITIONAL INSTRUCTIONS ***
{additional_instructions_from\user}
*** END OF ADDITIONAL INSTRUCTIONS ***

# Here is the up to date content of the file that the user is working on:
*** BEGINNING OF CONTEXT OF FILE ***
{context_of_file}
*** END OF CONTEXT OF FILE ***

# Your job now is to produce code that implements the solution based on the options that the user has selected.
- This should take into account previous decisions that the user has made.
- It should also consider the context of the file that the user is working on.
- If the user has provided them, incorporate the additional instructions that the user has provided.

# Return the code that you have produced in the defined format, along with potential further text explanations
if needed.
"""

B User Study Material
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B.1 Demographic Questionnaire

Figure 10: User-Study Material - Demographic Questionnaire.
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B.2 Task Set 1

Figure 11: User-Study Material - Taskset 1 Introduction.
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Figure 12: User-Study Material - Taskset 1 Tasks.
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B.3 Task Set 2

Figure 13: User-Study Material - Taskset 2 Introduction.
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Figure 14: User-Study Material - Taskset 2 Tasks.
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B.4 Post-Task Questionnaires

Figure 15: User-Study Material - Post-Task Questionnaire.
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B.5 Exit Interview Questionnaire

Figure 16: User-Study Material - Exit Interview (1/3).
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Figure 17: User-Study Material - Exit Interview (2/3).
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Figure 18: User-Study Material - Exit Interview (3/3).

C Post-Task Questionnaire Individual Aspects Results
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Figure 19: Results of Post-Task Questionnaire Question 1.
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Figure 20: Results of Post-Task Questionnaire Question 2.
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Figure 21: Results of Post-Task Questionnaire Question 3.
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Figure 22: Results of Post-Task Questionnaire Question 4.
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Figure 23: Results of Post-Task Questionnaire Question 5.
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Figure 24: Results of Post-Task Questionnaire Question 6.
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Figure 25: Results of Post-Task Questionnaire Question 7.
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